Pole-Polar: Key Facts

Tarik Adnan Moon

In this article, we shall provide key facts of Pole-Polar transformation, however without proof. Interested readers may find the proofs in various sources, referred sources are certainly good places to start. The main goal of this article is to provide a tool kit for problem solver.

1 Basic Facts

Theorem 1.1 (La Hire's Theorem). Let x and y be the polars of X and Y, respectively.
Then X is on line $y \Longleftrightarrow Y$ is on line x.
Proof. Let X^{\prime}, Y^{\prime} be the images of X, Y for the inversion with respect to C. Then $O X . O X^{\prime}=r^{2}=O Y . O Y^{\prime} \Longrightarrow$ $X . X^{\prime}, Y, Y^{\prime}$ are concyclic. Now,

$$
\begin{aligned}
X \in y & \Longleftrightarrow \angle X Y^{\prime} Y=90^{\circ} \\
& \Longleftrightarrow \angle X X^{\prime} Y=90^{\circ} \\
& \Longleftrightarrow Y \in x
\end{aligned}
$$

Theorem 1.2. Let x, y, z be the polars of distinct points X, Y, Z respectively. Then $Z=x \cap y \Longleftrightarrow z=X Y$ Proof. By La Hire's theorem, Z on $x \cap y \Longleftrightarrow X$ on z and Y on $z \Longleftrightarrow z=X Y$.

Theorem 1.3. Let $A B C D$ be a cyclic quadrilateral and (O) be its circumcircle. Denote points $E=A B \cap C D$, $F=A D \cap B C$ and $K=A C \cap B D$. Then prove that:

- EF is the polar of K w.r.t. (O)
- EK is the polar of F w.r.t. (O)
- FK is the polar of E w.r.t. (O)

Theorem 1.4 (Brokard). O is the orthocentre of triangle EFK.
Theorem 1.5. If $E A^{*} \perp A O, E A^{*}$ is the polar of the pole A, iff $\left(C_{1} D_{1} A^{*} A\right)=-1$.

Theorem 1.6. The polars of three points are concurrent if and only if they are collinear
Proof. (\Leftarrow) let X, Y, Z be three points on line d and let D be the pole of line d wrt circle w, now the polar of D passes through X so the polar of X passes through D, in the same way we conclude that the polars of Y, Z pass through D,so the polars of three collinear points X, Y, Z are concurrent.
(\Rightarrow) let x, y, z be three concurrent lines at D, and let d be the polar of D wrt circle w and let X, Y, Z be the poles of x, y, z respectively, now x passes through D so the polar of point D passes through the pole of line x i.e. d passes through X in the same way we conclude that d passes through Y, Z so X, Y, Z lie on line d which means that the poles of three concurrent lines are collinear.

1.1 A few words on Harmonic Conjugates and Cross Ratio.

Theorem 1.7. Inversion and Projectivity preserves cross ratio and hence harmonic conjugates.
Theorem 1.8. Assume that the points A, B, C, D_{1}, and D_{2} are either collinear or concyclic. If $\mathcal{R}\left(A, B ; C, D_{1}\right)=$ $\mathcal{R}\left(A, B ; C, D_{2}\right)$, then $D_{1}=D 2$. In other words, a projectivity with three fixed points is the identity.

Theorem 1.9. If the points A, B, C, D are mutually disjoint and $\mathcal{R}(A, B ; C, D)=\mathcal{R}(B, A ; C, D)$ then $\mathcal{H}(A, B ; C, D)$.

2 Examples

Problem 1 Let $A B C D$ is a quadrilateral and $A B C D$ inscribed in a circle (O). Let $A C$ meet $B D$ at point I. Let d is a line through point I and $d \perp O I$. Let d meet $A D$ and $B C$ at E and F respectively. Prove that I is midpoint of $E F$.

Solution 1 Suppose that

$$
A D \cap B C=P \quad B A \cap C D=Q \quad P I \cap C D=Z
$$

It is well-known fact that both points P, Q lies on the polar of I w.r.t to circumcircle of $A B C D$.Therefore, $P Q$ is the polar of I. It means that $O I \perp P Q$,simultaneously $O I \perp E F$, hence $P Q \| E F$.

As we know division (Q, Z, C, D) is harmonic. Now consider a pencil $P\left(X_{\infty}, I, F, E\right)$ and its intersection with $E F$.

Finally, $\left(X_{\infty}, I, F, E\right)=-1$
Hence $E I=I F$ and we are done.
Solution 2 If $E F$ meets the circle at K, L, then I is the midpoint of $K L$. By the butterfly theorem (with chord $A C, B D$ through the midpoint I of $K L$ we have then : $I E=I F$

Problem 2 [IMO shortlist] Let $A B C D$ be a bicentric quadrilateral, with (O) be its circumcircle, (I) be its incircle and H the intersection of $A C, B D$. Prove that O, I, H are collinear.

Solution Denote $F \in C B \cap A D, G \in A B \cap D C$. We know that H lies on the polars of F, G w.r.t (I) and (O), hence $F G$ is a polar of H w.r.t $(I),(O)$. Now it is obvious, because $I H \perp F G$ and $O H \perp F G$.

Problem 3 Let $A B C D$ be a quadrilateral, which has an inscribed circle (O). Let H be the orthogonal projection of O onto $B D$. Prove that $\angle A H B=\angle C H B$.

Solution Proof: Denote by $A_{1}, B_{1}, C_{1}, D_{1}$ the points of tangency of the incircle with the sides $A B, B C, C D, D A$ respectively.
Let X be the intersection point of $A_{1} B_{1}$ and $C_{1} D_{1}$ and Y be the intersection point of $B_{1} C_{1}$ and $A_{1} D_{1}$. Thus $B D$ is the polar of X w.r.t (O) and $A C$ is a polar of Y w.r.t (O).It is well-known that X also lies on the polar of Y w.r.t (O).Hence A, C, X are collinear.

Denote $Z \in X A_{1} \cap Y I$, where $I \in A_{1} C_{1} \cap B_{1} D_{1}$. We also know that I lies on the polar of Y w.r.t to (O).Hence A, I, C, X are collinear.Since $\left(A_{1}, Z, B_{1}, X\right)=-1 \Rightarrow(A, I, C, X)=-1$. (Consider the pencil $\left.B\left(A_{1}, Z, B_{1}, X\right)\right)$.
Now it sufficiently to show that O, H, X are collinear, which is obvious,since $B D$ is a polar of X w.r.t (O).
Problem 4 Let w be the incircle of triangle $\triangle A B C$ and let w touch the side $B C$ at D and let H be a point on $B C$ such that $A H \perp B C$ and name the midpoint of $A H$ as M. Now let $D M$ intersects w at X, prove that the circumcircle of $\triangle B X C$ is tangent to w.

Solution Let E, F be the tangency points of ω with the sides $C A, A B$, respectively. Call $D^{\prime}=E F \cap B C$, and Y the mid-point of the segment $D D^{\prime}$. We have $A D$ is the polar line of D^{\prime} w.r.t. ω, so $I D^{\prime} \perp A D$, where I is the center of ω. It implies $\triangle A D H \sim \triangle D^{\prime} I D, \Rightarrow \triangle M D H \sim \triangle Y I D$. It means $I Y \perp D M$, i.e. $D M$ is the polar line of Y relative to ω. Hence, $Y X$ is tangent to ω (1).
On the other hand, the division $\left(B D C D^{\prime}\right)$ is harmonic, so $Y B \cdot Y C=Y D^{2}=Y X^{2}$. It follows $Y X$ is tangent to the circumcircle of triangle $B X C$ (2).
Combining (1) and (2) we get the result.

Remark. If we define N, P as the mid-points of the B - altitude and C - altitude of triangle $A B C$, then we also have $D M, E N$ and $F P$ are concurrent.

Problem 5 let the incircle of triangle $\triangle A B C$ touch the sides $B C, C A, A B$ at D, E, F respectively, let $E F$ intersect $B C$ at A^{\prime}, define B^{\prime}, C^{\prime} in the same way,prove that $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.

Solution Polar of A^{\prime} is $A D$ (Because $\left(A B, A C, A D, A A^{\prime}\right)=-1$), polar of B^{\prime} is $B E$, polar of C^{\prime} is $C F$. Because $A D, B E, C F$ are concurrent then $A^{\prime}, B^{\prime}, C^{\prime}$ are collinear.

Problem 6]Let P be a point outside circle w and let two lines passing through P intersect w at A, B and C, D respectively (so P, A, B and P, C, D are collinear and also B lies between P, A and C lies between P, D), now let $A D, B C$ intersect at Q and let $A C, B D$ intersect at S, prove that:

1) $O S \perp P Q$
2) $Q S \perp O P$

Solution 1.We know that S lies on the polar of P and on the polar Q w.r.t (O), hence S is a pole of $P Q$ w.r.t to (O), thus $O S \perp Q P$.
2.Points Q and S lie on the polar of P w.r.t (O), hence $Q S \perp O P$.

More examples can be found in [1],[2], [3].

3 References

1. Pole and Polar, Kin Y. Li
2. Projective Geometry, Milivoje Lukic
3. Examples of using harmonic divisions and polarity, http://www.mathlinks.ro/viewtopic.php?t=168866
4. An Introduction to Projective Geometry, Bobby Poon

* This document is prepared using $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$.
**13 April, 2009 © Tarik Adnan Moon,Bangladesh.
Email: moon.math@matholympiad.org.bd

