Projective Geometry

Milivoje Lukić

Contents

1 Cross Ratio. Harmonic Conjugates. Perspectivity. Projectivity 1
2 Desargue's Theorem 2
3 Theorems of Pappus and Pascal 2
4 Pole. Polar. Theorems of Brianchon and Brokard 3
5 Problems 4
6 Solutions 6

1 Cross Ratio. Harmonic Conjugates. Perspectivity. Projectivity

Definition 1. Let A, B, C, and D be colinear points. The cross ratio of the pairs of points (A, B) and (C, D) is

$$
\begin{equation*}
\mathcal{R}(A, B ; C, D)=\frac{\overrightarrow{A C}}{\overrightarrow{C B}}: \frac{\overrightarrow{A D}}{\overrightarrow{D B}} \tag{1}
\end{equation*}
$$

Let a, b, c, d be four concurrent lines. For the given lines p_{1} and p_{2} let us denote $A_{i}=a \cap p_{i}$, $B_{i}=b \cap p_{i}, C_{i}=c \cap p_{i}, D_{i}=d \cap p_{i}$, for $i=1$, 2. Then

$$
\begin{equation*}
\mathcal{R}\left(A_{1}, B_{1} ; C_{1}, D_{1}\right)=\mathcal{R}\left(A_{2}, B_{2} ; C_{2}, D_{2}\right) . \tag{2}
\end{equation*}
$$

Thus it is meaningful to define the cross ratio of the pairs of concurrent points as

$$
\begin{equation*}
\mathcal{R}(a, b ; c, d)=\mathcal{R}\left(A_{1}, B_{1} ; C_{1}, D_{1}\right) . \tag{3}
\end{equation*}
$$

Assume that points O_{1}, O_{2}, A, B, C, D belong to a circle. Then

$$
\begin{align*}
& \mathcal{R}\left(O_{1} A, O_{1} B ; O_{1} C, O_{1} D\right) \\
= & \mathcal{R}\left(O_{2} A, O_{2} B ; O_{2} C, O_{2} D\right) . \tag{4}
\end{align*}
$$

Hence it is meaningful to define the cross-ratio for cocyclic points as

$$
\begin{equation*}
\mathcal{R}(A, B ; C, D)=\mathcal{R}\left(O_{1} A, O_{1} B ; O_{1} C, O_{1} D\right) . \tag{5}
\end{equation*}
$$

Assume that the points A, B, C, D are colinear or cocyclic. Let an inversion with center O maps A, B, C, D into $A^{*}, B^{*}, C^{*}, D^{*}$. Then

$$
\begin{equation*}
\mathcal{R}(A, B ; C, D)=\mathcal{R}\left(A^{*}, B^{*} ; C^{*}, D^{*}\right) \tag{6}
\end{equation*}
$$

Definition 2. Assume that A, B, C, and D are cocyclic or colinear points. Pairs of points (A, B) and (C, D) are harmonic conjugates if $\mathcal{R}(A, B ; C, D)=-1$. We also write $\mathcal{H}(A, B ; C, D)$ when we want to say that (A, B) and (C, D) are harmonic conjugates to each other.

Definition 3. Let each of l_{1} and l_{2} be either line or circle. Perspectivity with respect to the point S $\stackrel{S}{\pi}$, is the mapping of $l_{1} \rightarrow l_{2}$, such that
(i) If either l_{1} or l_{2} is a circle than it contains S;
(ii) every point $A_{1} \in l_{1}$ is mapped to the point $A_{2}=O A_{1} \cap l_{2}$.

According to the previous statements perspectivity preserves the cross ratio and hence the harmonic conjugates.

Definition 4. Let each of l_{1} and l_{2} be either line or circle. Projectivity is any mapping from l_{1} to l_{2} that can be represented as a finite composition of perspectivities.

Theorem 1. Assume that the points A, B, C, D_{1}, and D_{2} are either colinear or cocyclic. If $\mathcal{R}\left(A, B ; C, D_{1}\right)=\mathcal{R}\left(A, B ; C, D_{2}\right)$, then $D_{1}=D_{2}$. In other words, a projectivity with three fixed points is the identity.
Theorem 2. If the points A, B, C, D are mutually discjoint and $\mathcal{R}(A, B ; C, D)=\mathcal{R}(B, A ; C, D)$ then $\mathcal{H}(A, B ; C, D)$.

2 Desargue's Theorem

The triangles $A_{1} B_{1} C_{1}$ and $A_{2} B_{2} C_{2}$ are perspective with respect to a center if the lines $A_{1} A_{2}$, $B_{1} B_{2}$, and $C_{1} C_{2}$ are concurrent. They are perspective with respect to an axis if the points $K=$ $B_{1} C_{1} \cap B_{2} C_{2}, L=A_{1} C_{1} \cap A_{2} C_{2}, M=A_{1} B_{1} \cap A_{2} B_{2}$ are colinear.

Theorem 3 (Desargue). Two triangles are perspective with respect to a center if and only if they are perspective with respect to a point.

3 Theorems of Pappus and Pascal

Theorem 4 (Pappus). The points A_{1}, A_{2}, A_{3} belong to the line a, and the points B_{1}, B_{2}, B_{3} belong to the line b. Assume that $A_{1} B_{2} \cap A_{2} B_{1}=C_{3}, A_{1} B_{3} \cap A_{3} B_{1}=C_{2}, A_{2} B_{3} \cap A_{3} B_{2}=C_{1}$. Then C_{1}, C_{2}, C_{3} are colinear.

Proof. Denote $C_{2}^{\prime}=C_{1} C_{3} \cap A_{3} B_{1}, D=A_{1} B_{2} \cap A_{3} B_{1}, E=A_{2} B_{1} \cap A_{3} B_{2}, F=a \cap b$. Our goal is to prove that the points C_{2} and C_{2}^{\prime} are identical. Consider the sequence of projectivities:

$$
A_{3} B_{1} D C_{2}{\underset{\pi}{A}}_{A_{1}}^{F} F B_{1} B_{2} B_{3} \stackrel{A_{2}}{\pi} \quad A_{3} E B_{2} C_{1} \stackrel{C_{3}}{\pi} A_{3} B_{1} D C_{2}^{\prime}
$$

We have got the projective transformation of the line $A_{3} B_{1}$ that fixes the points A_{3}, B_{1}, D, and maps C_{2} to C_{2}^{\prime}. Since the projective mapping with three fixed points is the identity we have $C_{2}=C_{2}^{\prime}$.

Theorem 5 (Pascal). Assume that the points $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}$ belong to a circle. The point in intersections of $A_{1} B_{2}$ with $A_{2} B_{1}, A_{1} B_{3}$ with $A_{3} B_{1}, A_{2} B_{3}$ with $A_{3} B_{2}$ lie on a line.

Proof. The points C_{2}^{\prime}, D, and E as in the proof of the Pappus theorem. Consider the sequence of perspectivities

$$
A_{3} B_{1} D C_{2} \stackrel{A_{1}}{\pi} A_{3} B_{1} B_{2} B_{3}{ }_{\pi}^{A_{\pi}} \quad A_{3} E B_{2} C_{1} \stackrel{C_{3}}{\pi} A_{3} B_{1} D C_{2}^{\prime} .
$$

In the same way as above we conclude that $C_{2}=C_{2}^{\prime}$.

4 Pole. Polar. Theorems of Brianchon and Brokard

Definition 5. Given a circle $k(O, r)$, let A^{*} be the image of the point $A \neq O$ under the inversion with respect to k. The line a passing through A^{*} and perpendicular to $O A$ is called the polar of A with respect to k. Conversely A is called the pole of a with respect to k.

Theorem 6. Given a circle $k(O, r)$, let and a and b be the polars of A and B with respect to k. The $A \in b$ if and only if $B \in a$.

Proof. $A \in b$ if and only if $\angle A B^{*} O=90^{\circ}$. Analogously $B \in a$ if and only if $\angle B A^{*} O=90^{\circ}$, and it reamins to notice that according to the basic properties of inversion we have $\angle A B^{*} O=\angle B A^{*} O$.

Definition 6. Points A and B are called conjugated with respect to the circle k if one of them lies on a polar of the other.

Theorem 7. If the line determined by two conjugated points A and B intersects $k(O, r)$ at C and D, then $\mathcal{H}(A, B ; C, D)$. Conversely if $\mathcal{H}(A, B ; C, D)$, where $C, D \in k$ then A and B are conjugated with respect to k.

Proof. Let C_{1} and D_{1} be the intersection points of $O A$ with k. Since the inversion preserves the cross-ratio and $\mathcal{R}\left(C_{1}, D_{1} ; A, A^{*}\right)=\mathcal{R}\left(C_{1}, D_{1} ; A^{*}, A\right)$ we have

$$
\begin{equation*}
\mathcal{H}\left(C_{1}, D_{1} ; A, A^{*}\right) \tag{7}
\end{equation*}
$$

Let p be the line that contains A and intersects k at C and D. Let $E=C C_{1} \cap D D_{1}, F=C D_{1} \cap D C_{1}$. Since $C_{1} D_{1}$ is the diameter of k we have $C_{1} F \perp D_{1} E$ and $D_{1} F \perp C_{1} E$, hence F is the orthocenter of the triangle $C_{1} D_{1} E$. Let $B=E F \cap C D$ and $\bar{A}^{*}=E F \cap C_{1} D_{1}$. Since

$$
C_{1} D_{1} A \bar{A}^{*} \stackrel{E}{\pi} C D A B \stackrel{F}{\bar{\pi}} D_{1} C_{1} A \bar{A}^{*}
$$

have $\mathcal{H}\left(C_{1}, D_{1} ; A, \bar{A}^{*}\right)$ and $\mathcal{H}(C, D ; A, B)$. (7) now implies two facts:
1° From $\mathcal{H}\left(C_{1}, D_{1} ; A, \bar{A}^{*}\right)$ and $\mathcal{H}\left(C_{1}, D_{1} ; A, A^{*}\right)$ we get $A^{*}=\bar{A}^{*}$, hence $A^{*} \in E F$. However, since $E F \perp C_{1} D_{1}$, the line $E F=a$ is the polar of A.
2° For the point B which belongs to the polar of A we have $\mathcal{H}(C, D ; A, B)$. This completes the proof.

Theorem 8 (Brianchon's theorem). Assume that the hexagon $A_{1} A_{2} A_{3} A_{4} A_{5} A_{6}$ is circumscribed about the circle k. The lines $A_{1} A_{4}, A_{2} A_{5}$, and $A_{3} A_{6}$ intersect at a point.

Proof. We will use the convention in which the points will be denoted by capital latin letters, and their repsective polars with the corresponding lowercase letters.

Denote by $M_{i}, i=1,2, \ldots, 6$, the points of tangency of $A_{i} A_{i+1}$ with k. Since $m_{i}=A_{i} A_{i+1}$, we have $M_{i} \in a_{i}, M_{i} \in a_{i+1}$, hence $a_{i}=M_{i-1} M_{i}$.

Let $b_{j}=A_{j} A_{j+3}, j=1,2,3$. Then $B_{j}=a_{j} \cap a_{j+3}=M_{j-1} M_{j} \cap M_{j+3} M_{j+4}$. We have to prove that there exists a point P such that $P \in b_{1}, b_{2}, b_{3}$, or analogously, that there is a line p such that $B_{1}, B_{2}, B_{3} \in p$. In other words we have to prove that the points B_{1}, B_{2}, B_{3} are colinear. However this immediately follows from the Pascal's theorem applied to $M_{1} M_{3} M_{5} M_{4} M_{6} M_{2}$.

From the previous proof we see that the Brianchon's theorem is obtained from the Pascal's by replacing all the points with their polars and all lines by theirs poles.

Theorem 9 (Brokard). The quadrilateral $A B C D$ is inscribed in the circle k with center O. Let $E=A B \cap C D, F=A D \cap B C, G=A C \cap B D$. Then O is the orthocenter of the triangle $E F G$.

Proof. We will prove that $E G$ is a polar of F. Let $X=E G \cap B C$ and $Y=E G \cap A D$. Then we also have

$$
A D Y F \stackrel{E}{\pi} B C X F \stackrel{G}{\pi} D A Y F,
$$

which implies the relations $\mathcal{H}(A, D ; Y, F)$ and $\mathcal{H}(B, C ; X, F)$. According to the properties of polar we have that the points X and Y lie on a polar of the point F, hence $E G$ is a polar of the point F.

Since $E G$ is a polar of F, we have $E G \perp O F$. Analogously we have $F G \perp O E$, thus O is the orthocenter of $\triangle E F G$.

5 Problems

1. Given a quadrilateral $A B C D$, let $P=A B \cap C D, Q=A D \cap B C, R=A C \cap P Q$, $S=B D \cap P Q$. Prove that $\mathcal{H}(P, Q ; R, S)$.
2. Given a triangle $A B C$ and a point M on $B C$, let N be the point of the line $B C$ such that $\angle M A N=90^{\circ}$. Prove that $\mathcal{H}(B, C ; M, N)$ if and only if $A M$ is the bisector of the angle $\angle B A C$.
3. Let A and B be two points and let C be the point of the line $A B$. Using just a ruler find a point D on the line $A B$ such that $\mathcal{H}(A, B ; C, D)$.
4. Let A, B, C be the diagonal points of the quadrilateral $P Q R S$, or equivalently $A=P Q \cap R S$, $B=Q R \cap S P, C=P R \cap Q S$. If only the points A, B, C, S, are given using just a ruler construct the points P, Q, R.
5. Assume that the incircle of $\triangle A B C$ touches the sides $B C, A C$, and $A B$ at D, E, and F. Let M be the point such that the circle k_{1} incscibed in $\triangle B C M$ touches $B C$ at D, and the sides $B M$ and $C M$ at P and Q. Prove that the lines $E F, P Q, B C$ are concurrent.
6. Given a triangle $A B C$, let D and E be the points on $B C$ such that $B D=D E=E C$. The line p intersects $A B, A D, A E, A C$ at K, L, M, N, respectively. Prove that $K N \geq 3 L M$.
7. The point M_{1} belongs to the side $A B$ of the quadrilateral $A B C D$. Let M_{2} be the projection of M_{1} to the line $B C$ from D, M_{3} projection of M_{2} to $C D$ from A, M_{4} projection of M_{3} to $D A$ from B, M_{5} projection of M_{4} to $A B$ from C, etc. Prove that $M_{13}=M_{1}$.
8. (butterfly theorem) Points M and N belong to the circle k. Let P be the midpoint of the chord $M N$, and let $A B$ and $C D(A$ and C are on the same side of $M N)$ be arbitrary chords of k passing through P. Prove that lines $A D$ and $B C$ intersect $M N$ at points that are equidistant from P.
9. Given a triangle $A B C$, let D and E be the points of the sides $A B$ and $A C$ respectively such that $D E \| B C$. Let P be an interior point of the triangle $A D E$. Assume that the lines $B P$ and $C P$ intersect $D E$ at F and G respectively. The circumcircles of $\triangle P D G$ and $\triangle P F E$ intersect at $\operatorname{Pand} Q$. Prove that the points A, P, and Q are colinear.
10. (IMO 1997 shortlist) Let $A_{1} A_{2} A_{3}$ be a non-isosceles triangle with the incenter I. Let C_{i}, $i=1,2,3$, be the smaller circle through I tangent to both $A_{i} A_{i+1}$ and $A_{i} A_{i+2}$ (summation of indeces is done modulus 3). Let $B_{i}, i=1,2,3$, be the other intersection point of C_{i+1} and C_{i+2}. Prove that the circumcenters of the triangles $A_{1} B_{1} I, A_{2} B_{2} I, A_{3} B_{3} I$ are colinear.
11. Given a triangle $A B C$ and a point T, let P and Q be the feet of perpendiculars from T to the lines $A B$ and $A C$, respectively. Let R and S be the feet of perpendiculars from A to $T C$ and $T B$, respectively. Prove that the intersection of $P R$ and $Q S$ belongs to $B C$.
12. Given a triangle $A B C$ and a point M, a line passing through M intersects $A B, B C$, and $C A$ at C_{1}, A_{1}, and B_{1}, respectively. The lines $A M, B M$, and $C M$ intersect the circumcircle of $\triangle A B C$ repsectively at A_{2}, B_{2}, and C_{2}. Prove that the lines $A_{1} A_{2}, B_{1} B_{2}$, and $C_{1} C_{2}$ intersect in a point that belongs to the circumcircle of $\triangle A B C$.
13. Let P and Q isogonaly conjugated points and assume that $\triangle P_{1} P_{2} P_{3}$ and $\triangle Q_{1} Q_{2} Q_{3}$ are their pedal triangles, respectively. Let $X_{1}=P_{2} Q_{3} \cap P_{3} Q_{2}, X_{2}=P_{1} Q_{3} \cap P_{3} Q_{1}, X_{3}=$ $P_{1} Q_{2} \cap P_{2} Q_{1}$. Prove that the points X_{1}, X_{2}, X_{3} belong to the line $P Q$.
14. If the points A and M are conjugated with respect to k, then the circle with diameter $A M$ is orthogonal to k.
15. From a point A in the exterior of a circle k two tangents $A M$ and $A N$ are drawn. Assume that K and L are two points of k such that A, K, L are colinear. Prove that $M N$ bisects the segment $P Q$.
16. The point isogonaly conjugated to the centroid is called the Lemuan point. The lines connected the vertices with the Lemuan point are called symmedians. Assume that the tangents from B and C to the circumcircle Γ of $\triangle A B C$ intersect at the point P. Prove that $A P$ is a symmedian of $\triangle A B C$.
17. Given a triangle $A B C$, assume that the incircle touches the sides $B C, C A, A B$ at the points M, N, P, respectively. Prove that $A M, B N$, and $C P$ intersect in a point.
18. Let $A B C D$ be a quadrilateral circumscribed about a circle. Let M, N, P, and Q be the points of tangency of the incircle with the sides $A B, B C, C D$, and $D A$ respectively. Prove that the lines $A C, B D, M P$, and $N Q$ intersect in a point.
19. Let $A B C D$ be a cyclic quadrilateral whose diagonals $A C$ and $B D$ intersect at O; extensions of the sides $A B$ and $C D$ at E; the tangents to the circumcircle from A and D at K; and the tangents to the circumcircle at B and C at L. Prove that the points E, K, O, and L lie on a line.
20. Let $A B C D$ be a cyclic quadrilateral. The lines $A B$ and $C D$ intersect at the point E, and the diagonals $A C$ and $B D$ at the point F. The circumcircle of the triangles $\triangle A F D$ and $\triangle B F C$ intersect again at H. Prove that $\angle E H F=90^{\circ}$.

6 Solutions

1. Let $T=A C \cap B D$. Consider the sequence of the perspectivities

$$
P Q R S \stackrel{A}{\bar{\pi}} B D T S \stackrel{C}{\bar{\pi}} Q P R S .
$$

Since the perspectivites preserves the cross-ratio $\mathcal{R}(P, Q ; R, S)=\mathcal{R}(Q, P ; R, S)$ implying $\mathcal{H}(P, Q ; R, S)$.
2. Let $\alpha=\angle B A C, \beta=\angle C B A, \gamma=\angle A C B$ and $\varphi=\angle B A M$. Using the sine theorem on $\triangle A B M$ and $\triangle A C M$ we get

$$
\frac{B M}{M C}=\frac{B M}{A M} \frac{A M}{C M}=\frac{\sin \varphi}{\sin \beta} \frac{\sin \gamma}{\sin (\alpha-\varphi)}
$$

Similarly using the sine theorem on $\triangle A B N$ and $\triangle A C N$ we get

$$
\frac{B N}{N C}=\frac{B N}{A N} \frac{A N}{C N}=\frac{\sin \left(90^{\circ}-\varphi\right)}{\sin \left(180^{\circ}-\beta\right)} \frac{\sin \gamma}{\sin \left(90^{\circ}+\alpha-\varphi\right)}
$$

Combining the previous two equations we get

$$
\frac{B M}{M C}: \frac{B N}{N C}=\frac{\tan \varphi}{\tan (\alpha-\varphi)}
$$

Hence, $|\mathcal{R}(B, C ; M, N)|=1$ is equivalent to $\tan \varphi=\tan (\alpha-\varphi)$, i.e. to $\varphi=\alpha / 2$. Since $B \neq C$ and $M \neq N$, the relation $|\mathcal{R}(B, C ; M, N)|=1$ is equivalent to $\mathcal{R}(B, C ; M, N)=$ -1 , and the statement is now shown.
3. The motivation is the problem 1. Choose a point K outside $A B$ and point L on $A K$ different from A and K. Let $M=B L \cap C K$ and $N=B K \cap A M$. Now let us construct a point D as $D=A B \cap L N$. From the problem 1 we indeed have $\mathcal{H}(A, B ; C, D)$.
4. Let us denote $D=A S \cap B C$. According to the problem 1 we have $\mathcal{H}(R, S ; A, D)$. Now we construct the point $D=A S \cap B C$. We have the points A, D, and S, hence according to the previous problem we can construct a point R such that $\mathcal{H}(A, D ; S, R)$. Now we construct $P=B S \cap C R$ and $Q=C S \cap B R$, which solves the problem.
5. It is well known (and is easy to prove using Ceva's theorem) that the lines $A D, B E$, and $C F$ intersect at a point G (called a Gergonne point of $\triangle A B C)$ Let $X=B C \cap E F$. As in the problem 1 we have $\mathcal{H}(B, C ; D, X)$. If we denote $X^{\prime}=B C \cap P Q$ we analogously have $\mathcal{H}\left(B, C ; D, X^{\prime}\right)$, hence $X=X^{\prime}$.
6. Let us denote $x=K L, y=L M, z=M N$. We have to prove that $x+y+z \geq 3 y$, or equivalently $x+z \geq 2 y$. Since $\mathcal{R}(K, N ; L, M)=\mathcal{R}(B, C ; D, E)$, we have

$$
\frac{x}{y+z}: \frac{x+y}{z}=\frac{\overrightarrow{K L}}{\overrightarrow{L N}}: \frac{\overrightarrow{K M}}{\overrightarrow{M N}}=\frac{\overrightarrow{B D}}{\overrightarrow{D C}}: \frac{\overrightarrow{B E}}{\overrightarrow{E C}}=\frac{1}{2}: \frac{1}{2},
$$

implying $4 x z=(x+y)(y+z)$.
If it were $y>(x+z) / 2$ we would have

$$
x+y>\frac{3}{2} x+\frac{1}{2} z=2 \frac{1}{4}(x+x+x+z) \geq 2 \sqrt[4]{x x x z}
$$

and analogously $y+z>2 \sqrt[4]{x z z z}$ as well as $(x+y)(y+z)>4 x z$ which is a contradiction. Hence the assumption $y>(x+z) / 2$ was false so we have $y \leq(x+z) / 2$.
Let us analyze the case of equality. If $y=(x+z) / 2$, then $4 x z=(x+y)(x+z)=$ $(3 x+z)(x+3 z) / 4$, which is equivalent to $(x-z)^{2}=0$. Hence the equality holds if $x=y=z$. We leave to the reader to prove that $x=y=z$ is satisfied if and only if $p \| B C$.
7. Let $E=A B \cap C D, F=A D \cap B C$. Consider the sequence of perspectivities

$$
\begin{equation*}
A B E M_{1} \stackrel{D}{\pi} F B C M_{2} \stackrel{A}{\pi} D E C M_{3} \stackrel{B}{\pi} D A F M_{4} \stackrel{C}{\pi} E A B M_{5} . \tag{8}
\end{equation*}
$$

According to the conditions given in the problem this sequence of perspectivites has two be applied three more times to arrive to the point M_{13}. Notice that the given sequence of perspectivities maps A to E, E to B, and B to A. Clearly if we apply (8) three times the points A, B, and E will be fixed while M_{1} will be mapped to M_{13}. Thus $M_{1}=M_{13}$.
8. Let X^{\prime} be the point symmetric to Y with respect to P. Notice that

$$
\begin{aligned}
& \mathcal{R}(M, N ; X, P)=\mathcal{R}(M, N ; P, Y) \quad \text { (from } M N X P \stackrel{D}{\hbar} M N A C \stackrel{B}{\hbar} M N P Y) \\
&=\mathcal{R}\left(N, M ; P, X^{\prime}\right) \quad \text { (the reflection with the center } P \text { preserves } \\
& \text { the ratio, hence it preserves the cross-ratio) } \\
&=\frac{1}{\mathcal{R}\left(N, M ; X^{\prime}, P\right)}=\mathcal{R}\left(M, N ; X^{\prime}, P\right),
\end{aligned}
$$

where the last equality follows from the basic properties of the cross ratio. It follows that $X=X^{\prime}$.
9. Let $J=D Q \cap B P, K=E Q \cap C P$. If we prove that $J K \| D E$ this would imply that the triangles $B D J$ and $C E K$ are perspective with the respect to a center, hence with repsect to an axis as well (according to Desargue's theorem) which immediately implies that A, P, Q are colinear (we encourage the reader to verify this fact).
Now we will prove that $J K \| D E$. Let us denote $T=D E \cap P Q$. Applying the Menelaus theorem on the triangle $D T Q$ and the line $P F$ we get

$$
\frac{\overrightarrow{D J}}{\overrightarrow{J Q}} \overrightarrow{\overrightarrow{Q P}} \frac{\overrightarrow{P P}}{\overrightarrow{F D}}=-1
$$

Similarly from the triangle $E T Q$ and the line $P G$:

$$
\frac{\overrightarrow{E K}}{\overrightarrow{K Q}} \stackrel{\overrightarrow{Q P}}{\overrightarrow{P T}} \frac{\overrightarrow{T G}}{\overrightarrow{G E}}=-1
$$

Dividing the last two equalities and using $D T \cdot T G=F T \cdot T E$ (T is on the radical axis of the circumcircles of $\triangle D P G$ and $\triangle F P E$), we get

$$
\frac{\overrightarrow{D J}}{\overrightarrow{J Q}}=\frac{\overrightarrow{E K}}{\overrightarrow{K Q}}
$$

Thus $J K \| D E$, q.e.d.
10. Apply the inversion with the respect to I. We leave to the reader to draw the inverse picture. Notice that the condition that I is the incentar now reads that the circumcircles $A_{i}^{*} A_{i+1}^{*} I$ are of the same radii. Indeed if R is the radius of the circle of inversion and r the distance between I and $X Y$ then the radius of the circumcircle of $\triangle I X^{*} Y^{*}$ is equal to R^{2} / r. Now we use the following statement that is very easy to prove: '"Let k_{1}, k_{2}, k_{3} be three circles such that all
pass through the same point I, but no two of them are mutually tangent. Then the centers of these circles are colinear if and only if there exists another common point $J \neq I$ of these three circles."

In the inverse picture this transforms into proving that the lines $A_{1}^{*} B_{1}^{*}, A_{2}^{*} B_{2}^{*}$, and $A_{3}^{*} B_{3}^{*}$ intersect at a point.

In order to prove this it is enough to show that the corresponding sides of the triangles $A_{1}^{*} A_{2}^{*} A_{3}^{*}$ and $B_{1}^{*} B_{2}^{*} B_{3}^{*}$ are parallel (then these triangles would be perspective with respect to the infinitely far line). Afterwards the Desargue's theorem would imply that the triangles are perspective with respect to a center. Let P_{i}^{*} be the incenter of $A_{i+1}^{*} A_{i+2}^{*} I$, and let Q_{i}^{*} be the foot of the perpendicular from I to $P_{i+1}^{*} P_{i+2}^{*}$. It is easy to prove that

$$
\overrightarrow{A_{1}^{*} A_{2}^{*}}=2 \overrightarrow{Q_{1}^{*} Q_{2}^{*}}=-\overrightarrow{P_{1}^{*} P_{2}^{*}}
$$

Also since the circles $A_{i}^{*} A_{i+1}^{*} I$ are of the same radii, we have $P_{1}^{*} P_{2}^{*} \| B_{1}^{*} B_{2}^{*}$, hence $A_{1}^{*} A_{2}^{*} \|$ $B_{1}^{*} B_{2}^{*}$.
11. We will prove that the intersection X of $P R$ and $Q S$ lies on the line $B C$. Notice that the points P, Q, R, S belong to the circle with center $A T$. Consider the six points A, S, R, T, P, Q that lie on a circle. Using Pascal's theorem with respect to the diagram

we get that the points B, C, and $X=P R \cap Q S$ are colinear.
12. First solution, using projective mappings. Let $A_{3}=A M \cap B C$ and $B_{3}=B M \cap A C$. Let X be the other intersection point of the line $A_{1} A_{2}$ with the circumcircle k of $\triangle A B C$. Let X^{\prime} be the other intersection point of the line $B_{1} B_{2}$ with k. Consider the sequence of perspectivities

$$
A B C X \stackrel{A_{2}}{\pi} \quad A_{3} B C A_{1} \stackrel{M}{\pi} A B_{3} C B_{1} \stackrel{B_{2}}{\pi} A B C X^{\prime}
$$

which has three fixed points A, B, C, hence $X=X^{\prime}$. Analogously the line $C_{1} C_{2}$ contains X and the problem is completely solved.
Second solution, using Pascal's theorem. Assume that the line $A_{1} A_{2}$ intersect the circumcircle of the trianlge $A B C$ at A_{2} and X. Let $X B_{2} \cap A C=B_{1}^{\prime}$. Let us apply the Pascal's theorem on the points A, B, C, A_{2}, B_{2}, X according the diagram:

It follows that the points A_{1}, B_{1}^{\prime}, and M are colinear. Hence $B_{1}^{\prime} \in A_{1} M$. According to the definition of the point B_{1}^{\prime} we have $B_{1}^{\prime} \in A C$ hence $B_{1}^{\prime}=A_{1} M \cap A C=B_{1}$. The conclusion is that the points X, B_{1}, B_{2} are colinear. Analogously we prove that the points X, C_{1}, C_{2} are colinear, hence the lines $A_{1} A_{2}, B_{1} B_{2}, C_{1} C_{2}$ intersect at X that belongs to the circumcircle of the triangle $A B C$.
13. It is well known (from the theory of pedal triangles) that pedal triangles corresponding to the isogonally conjugated points have the common circumcircle, so called pedal circle of the points P and Q. The center of that circle which is at the same time the midpoint of $P Q$ will be denoted by R. Let $P_{1}^{\prime}=P P_{1} \cap Q_{1} R$ and $P_{2}^{\prime}=P P_{2} \cap Q_{2} R$ (the points P_{1}^{\prime} and P_{2}^{\prime} belong to the pedal circle of the point P, as point on the same diameters as Q_{1} and Q_{2} respectively). Using the Pascal's theorem on the points $Q_{1}, P_{2}, P_{2}^{\prime}, Q_{2}, P_{1}, P_{1}^{\prime}$ in the order shown by the diagram

we get that the points P, R, X_{1} are colinear or $X_{1} \in P Q$. Analogously the points X_{2}, X_{3} belong to the line $P Q$.
14. Let us recall the statement according to which the circle l is invariant under the inversion with respect to the circle k if and only if $l=k$ or $l \perp k$.
Since the point M belongs to the polar of the point A with respect to k we have $\angle M A^{*} A=$ 90° where $A^{*}=\psi_{l}(A)$. Therefore $A^{*} \in l$ where l is the circle with the radius $A M$. Analogously $M^{*} \in l$. However from $A \in l$ we get $A^{*} \in l^{*} ; A^{*} \in l$ yields $A \in l^{*}$ (the inversion is inverse to itself) hence $\psi_{l}\left(A^{*}\right)=A$). Similarly we get $M \in l^{*}$ and $M^{*} \in l^{*}$. Notice that the circles l and l^{*} have the four common points A, A^{*}, M, M^{*}, which is exactly two too much. Hence $l=l^{*}$ and according to the statement mentioned at the beginning we conclude $l=k$ or $l \perp k$. The case $l=k$ can be easily eliminated, because the circle l has the diameter $A M$, and $A M$ can't be the diameter of k because A and M are conjugated to each other.

Thus $l \perp k$, q.e.d.
15. Let $J=K L \cap M N, R=l \cap M N, X_{\infty}=l \cap A M$. Since $M N$ is the polar of A from $J \in M N$ we get $\mathcal{H}(K, L ; J, A)$. From $K L J A \xlongequal[\bar{\pi}]{M} P Q R X_{\infty}$ we also have $\mathcal{H}\left(P, Q ; R, X_{\infty}\right)$. This implies that R is the midpoint of $P Q$.
16. Let Q be the intersection point of the lines $A P$ and $B C$. Let Q^{\prime} be the point of $B C$ such that the ray $A Q^{\prime}$ is isogonal to the ray $A Q$ in the triangle $A B C$. This exactly means that $\angle Q^{\prime} A C=\angle B A Q$ i $\angle B A Q^{\prime}=\angle Q A C$.
For an arbitrary point X of the segment $B C$, the sine theorem applied to triangles $B A X$ and $X A C$ yields

$$
\frac{B X}{X C}=\frac{B X}{A X} \frac{A X}{X C}=\frac{\sin \angle B A X}{\sin \angle A B X} \frac{\sin \angle A C X}{\sin \angle X A C}=\frac{\sin \angle A C X}{\sin \angle A B X} \frac{\sin \angle B A X}{\sin \angle X A C}=\frac{A B}{A C} \frac{\sin \angle B A X}{\sin \angle X A C} .
$$

Applying this to $X=Q$ and $X=Q^{\prime}$ and multiplying together afterwards we get

$$
\begin{equation*}
\frac{B Q}{Q C} \frac{B Q^{\prime}}{Q^{\prime} C}=\frac{A B}{A C} \frac{\sin \angle B A Q}{\sin \angle Q A C} \frac{A B}{A C} \frac{\sin \angle B A Q^{\prime}}{\sin \angle Q^{\prime} A C}=\frac{A B^{2}}{A C^{2}} \tag{9}
\end{equation*}
$$

Hence if we prove $B Q / Q C=A B^{2} / A C^{2}$ we would immediately have $B Q^{\prime} / Q^{\prime} C=1$, making Q^{\prime} the midpoint of $B C$. Then the line $A Q$ is isogonaly conjugated to the median, implying the required statement.

Since P belongs to the polars of B and C, then the points B and C belong to the polar of the point P, and we conclude that the polar of P is precisely $B C$. Consider the intersection D of the line $B C$ with the tangent to the circumcircle at A. Since the point D belongs to the
polars of A and $P, A P$ has to be the polar of D. Hence $\mathcal{H}(B, C ; D, Q)$. Let us now calculate the ratio $B D / D C$. Since the triangles $A B D$ and $C A D$ are similar we have $B D / A D=$ $A D / C D=A B / A C$. This implies $B D / C D=(B D / A D)(A D / C D)=A B^{2} / A C^{2}$. The relation $\mathcal{H}(B, C ; D, Q)$ implies $B Q / Q C=B D / D C=A B^{2} / A C^{2}$, which proves the statement.
17. The statement follows from the Brianchon's theorem applied to $A P B M C N$.
18. Applying the Brianchon's theorem to the hexagon $A M B C P D$ we get that the line $M P$ contains the intersection of $A B$ and $C D$. Analogously, applying the Brianchon's theorem to $A B N C D Q$ we get that $N Q$ contains the same point.
19. The Brokard's theorem claims that the polar of $F=A D \cap B C$ is the line $f=E O$. Since the polar of the point on the circle is equal to the tangent at that point we know that $K=a \cap d$, where a and d are polars of the points A and D. Thus $k=A D$. Since $F \in A D=k$, we have $K \in f$ as well. Analogously we can prove that $L \in f$, hence the points E, O, K, L all belong to f.
20. Let $G=A D \cap B C$. Let k be the circumcircle of $A B C D$. Denote by k_{1} and k_{2} respectively the circumcircles of $\triangle A D F$ and $\triangle B C F$. Notice that $A D$ is the radical axis of the circles k and $k_{1} ; B C$ the radical axis of k and k_{2}; and $F H$ the radical axis of k_{1} and k_{2}. According to the famous theorem these three radical axes intersect at one point G. In other words we have shown that the points F, G, H are colinear.
Without loss of generality assume that F is between G and H (alternatively, we could use the oriented angles). Using the inscribed quadrilaterals $A D F H$ and $B C F H$, we get $\angle D H F=$ $\angle D A F=\angle D A C$ and $\angle F H C=\angle F B C=\angle D B C$, hence $\angle D H C=\angle D H F+$ $\angle F H C=\angle D A C+\angle D B C=2 \angle D A C=\angle D O C$. Thus the points D, C, H, and O lie on a circle. Similarly we prove that the points A, B, H, O lie on a circle.

Denote by k_{3} and k_{4} respectively the circles circumscribed about the quadrilaterals $A B H O$ and $D C H O$. Notice that the line $A B$ is the radical axis of the circles k and k_{3}. Simlarly $C D$ and $O H$, respectively, are those of the pairs of circles $\left(k, k_{2}\right)$ and $\left(k_{3}, k_{4}\right)$. Thus these lines have to intersect at one point, and that has to be E. This proves that the points O, H, and E are colinear.
According to the Brocard's theorem we have $F H \perp O E$, which according to $F H=G H$ and $O E=H E$ in turn implies that $G H \perp H E$, q.e.d.

