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The note has been separated into two parts, one discusses most of the
basic ideas in divisibility and the other have only problems. The problems
are not attached with the sections where the ideas have been discussed. It
has been separated for the purpose that you don’t know what you have to
use while solving the problems. Solving problems while discussing particular
theory, it becomes almost obvious which idea you should invoke. But in
real, when the competition arises, we don’t know which theorem is going to
rescue us. To have a skill for identifying the perfect theorem needed to solve
a problem, the problems have become another part of this note. Moreover,
the problems are divided into two. Some problems are solved, and the others
are left for practices.

Further Reading

The following books are strongly recommended for further reading. Prob-
ably it is the order they should be arranged. The books with lower numbering
should be read first.

1. Art And Craft Of Problem Solving, by Paul Zietz.

2. Problem Solving Strategies(Chapter 6-Number Theory), by Arthur En-
gel.

3. 104 Number Theory Problems, by Titu Andreescu, Dorin Andrica, Zum-
ing Feng.

4. Number Theory, Structures, Examples And Problems, by Titu An-
dreescu, Dorin Andrica.

5. Number Theory, by S.G. Telang.

Then you are able to read any book further. Note that the theorem
book of Telang is put in the last position. You might think that this book
should appear at first. In our country, it is considered the more theorems
you know the more problems you can solve in number theory. In fact, this
is false. Everything is almost in vain without intuition. So, before learning
any theorem, you have to learn how to think and implement those properly.
Without intuition, you may not be able to apply the theorems already learnt.
When you read the first and second book, you have to use almost no theorem
to solve problems. By this process you gain an ability to understand what
the best theorem to be invoked here is. If you learn theorems after having a
minimum intuition, then you can understand yourself what you have learnt.
Then the last book can help you the most.



Part I

Foundations Of Divisibility
And Congruence
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Chapter 1

Divisibility

1.1 Definitions

Note the following division of 97 by 24.

97 = 24 · 4 + 1

In this division, we call 4 the quotient and 1 the remainder of this division.
For the division 96 = 24 · 4 + 0, we have the remainder 0. In this case, we
say that 96 is divisible by 24 and 4 both.

Definition 1. Let a and b be two natural numbers such that b leaves a
remainder 0 upon division by a. Then b is said to be divisible by a. We

denote it by a|b. Sometimes, the notation b
...a is also used but in this note,

we shall make the most common use of the notation of a|b.
Here, a is called a divisor of b and b is a multiple of a. If b leaves a

remainder other than 0, then b is not divisible by a and is denoted by a 6 |b.

Example. 7|343, 565655 is a multiple of 5, 29 is a divisor of 841 and so
on.......

Try some more examples and make sure with the notations and defini-
tions of divisibility. Because your further reading of this note requires this
excellency.

Definition 2. If any positive integer is not divisible by any positive integer
except 1 and that number, we call this special number a prime. Alternatively,

3



4 CHAPTER 1. DIVISIBILITY

a number1 is prime if and only if2

Prime number is the most useful in number theory, and it is the block
builder of the entire number theory.

Example. 2 is the only even prime. If an even number is greater than 2,
then it must be divisible by 2. Thus, it can’t be a prime. First 3 odd primes
are 3, 5, 7.

Definition 3. If a number leaves remainder 0 upon division by 2, then it is
called even. If it leaves the remainder 1, then it is called odd. The property
of a number being even or odd is called parity. Two numbers are of the same
pairity if they both are odd or both are even. Otherwise they are of opposite
parity. In other words, if two numbers give same remainder upon division by
2, they are of the same parity, else opposite.

Example. 5 and 7 are of the same parity, whereas 4 and 3 are not.

Check the truth of the following claims:

1. The sum and difference of two numbers of the same parity is even.

2. The sum and difference of two numbers of different parity is odd.

3. Increasing or decreasing a number by a multiple of 2 does not change
the parity.

4. Any odd multiple of a number has the same parity of the number, and
for even multiple has a parity even.

1We may call ‘positive integers’ generally ‘number’, if not stated.
2A proposition is said to be a ‘if and only if ’ or ‘iff’ one when both the claim and the

converse is true. For example, consider the following claim:

Every number divisible by 6 is even.

But the converse is :

Every even number is divisible by 6

The first claim is true whereas the second one is not. So, it is not a iff statement. Check
that the following claim:

Every even number is divisible by 2.

is an if and only if one.
For this, the notation ⇐⇒ is used. For the example above,

x is even ⇐⇒ x is divisible by 2.
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5. The parity remains unchanged after raising to a power.

These claims often come to the role. Note also the converse of them are true
as well.

1.2 Properties Of Divisibility

Now, we see some corollaries that follow from the divisibility issue of a and
b. These proofs are very simple. We shall use them while solving problems
later. It is notable as well that, all the parameters involving divisibility
generally are positive integers. If not stated in the problem, we may assume
so. Because it is totally nonsense about discussing the divisibility of numbers
with fractional part.

1. If a|b, then b
a

must be a positive integer.

Let
b

a
= k

Then b = ak. Thus, if a|b, there exists a unique positive integer ( in
fact, it is the quotient of the division of a and b ) such that b = ak.
Also, note that the relation k|b is true.

2. Obviously a|a and a|0 for all a ∈ Z.

3. If a|b, then a| − b or −a|b or −a| − b.

4. If a|b, of-course b ≥ a. Since every factor of a must be included in
the factorization of b, b must be greater than or equal to a. The only
possible case when b < a is b = 0.

Specially, if a, b ∈ N and a|b, then b ≥ a.

5. If a|b and b|a, then it easily follows from #3 that a = b must hold.

6. If a|b and b|c, then a|c too. Let b = ak, c = bk′. Then, c = akk′ which
implies a|c.

7. If a|b, then ac|bc too and the converse is also true that is, if ac|bc, then
a|b. This is straight forward. If ac|bc, bc

ac
= b

a
is a positive integer, or

a|b.
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8. If a|b and a|c, then any combination of b and c is divisible by a. In
other words,

a|bx + cy

for integers x, y.

Important cases are
a|b± aq

a|b± c

a|b± a

9. If d|p, then d = 1 or d = p.

10. If a|b, every prime divisor p of a also divides b.3

11. (Euclid’s Lemma) If p is a prime such that p|ab, then p|a or p|b.

12. If a 6 |b, then it must leave a remainder other than 0. Say, it is r. Then,
b− r would be divisible by a. Let

b− r = aq or b = aq + r

Now, we prove that this r is a unique positive integer if 0 < r < a.

For the sake of contradiction, suppose that

b = aq1 + r1 = aq2 + r2

with r1, r2 < a. From the latter, we get

a(q1 − q2) = r2 − r1

This equation says that a|r2 − r1. But r2 − r1 < a, a contradiction !!

13. For all composite 4 n > 1, n has a prime divisor p such that

p ≤
√
n

Assume that the smallest prime factor of n is p. Then n = pk for some
k ≥ p. If k < p, then k would have at least one prime factor less than
p, but that is not possible. Therefore, k ≥ p. Then

n = kp ≥ p2

⇒ p ≤
√
n

Using this property, we can determine whether a number is a prime or
not. Though this is not an efficient approach at all, it is very useful for
small numbers.

3Specially it is useful to consider the smallest prime factor of a which divides b.
4the numbers which is the product of two numbers at least 2 is called a composite

number
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1.3 Some Basic Combinatorial Identities

Some most useful notions in combinatorics are:

• n factorial n! is the product of the first n positive integers. It is defined
as:

n! =

{
1 if n = 0 or 1
1 · 2 · · ·n otherwise

In other words, we can say that n is the number of permutations of n
distinct balls without any repetition. 5

• The binomial coefficient for two positive integers n and k is denoted by(
n
k

)
or nCk or Cn,k or Ck

nwhere n ≥ k ≥ 0.6 And it is read as n choose
k.

It can be formulated as, (
n

k

)
=

n!

k!(n− k)!

Practically, it means the number of ways to choose k distinct persons
from a pool of n distinct persons.

• nPk is the number of permutations or arrangements (i.e. considering
orders with the combination) to take k distinct balls at a time from n
distinct balls without any repetition. It is formulated as

nPk =
n!

(n− k)!

Note that if we take n at a time, then

nPn = n!

Remember the definition of n!.

Identity 1. (
n

k

)
=

(
n

n− k

)
5can you make the sense 0! = 1.
6Note that n < k does not make any sense. We can never choose 4 apples from 3. So,

the sense implies that for n < k, (
n

k

)
= 0
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We can prove this using the formula of n! and the definition of
(
n
k

)
. But

here a combinatorial proof is preferred since it makes a better sense.7

Combinatorial Proof. Think cleverly. When we separate k arbitrary people
from a pool of n persons, for every choice we make, there are n−k left as not
chosen. Therefore, the number of ways k people are chosen is equal to the
number of k people are left behind the choice. The latter number is of-course(
n
k

)
. Now it is obvious that (

n

k

)
=

(
n

n− k

)

Identity 2.

nPk = k! ·
(
n

k

)
Proof. Note that the number of permutations remains same if we first choose
k persons and then permute them. We can choose k persons in

(
n
k

)
ways.

Then we can re-permute them in k! ways. Now it is obvious that,

nPk = k! ·
(
n

k

)

7Try the algebraic proof yourself.



Chapter 2

GCD And LCM

We shall now discuss what the greatest common divisor and least common
multiple of two numbers is.

Definition 4. Both the numbers a and b has several divisors. It is a common
incidence that they have some same divisors. But the greatest one among
them is a unique number. This one is called the greatest common divisor or
highest common factor of a and b. This is frequently denoted by gcd(a, b) or
hcf(a, b).

Sometimes it is denoted shortly by (a, b) only. In this note, we shall use
this notation for brevity. When (a, b) = 1 that is two numbers don’t have
a common divisor other than 1, then a is called to be co-prime or relatively
prime with b and is denoted by a ⊥ b.

Example. (6, 28) = 2, because 2 is the most common part among them.
56 ⊥ 243, since 56 and 243 don’t share any common factor other than 1.

As a consequence of gcd, the idea of least common multiple comes.
There are obviously an infinite multiples of a and b, namely

a · 1, a · 2, . . . . . .

b · 1, b · 2, . . . . . .

But their is a unique smallest multiple which is a multiple of both a and b.
This is called the least common multiple of a and b.

Definition 5. The smallest positive integer that is divisible by both a and
b is called the least common multiple of a, b. The notation lcm(a, b) or [a, b]
is used to denote the least common multiple. For brevity,we shall use the
notation [a, b].

9



10 CHAPTER 2. GCD AND LCM

Example. [24, 40] = 120.

Note. We can extend this for more numbers too. You can of-course find the
gcd of more than two numbers. Similarly, you may find out the lcm of more
than two numbers too.

2.1 Properties Of GCD And LCM

From the definition of gcd and lcm, we get the following facts involving
divisibility.

1. (a, b)|a and (a, b)|b.

2. a|[a, b] and b|[a, b].

3. (a, b)|[a, b] and so [a, b] ≥ (a, b).

4. If d|a and d|b, then d|(a, b). Because (a, b) is the greatest among the
factors of a and b.

5. Every prime divisor of a and b divides [a, b].

6. Every prime divisor of (a, b)|a, b.

7. (a, b)|ax+ by for any integers x, y. This is actually a corollary of divis-
ibility property #7.

8. If a = (a, b) · a′, b = (a, b) · b′, then a′ ⊥ b′. This is very easy to sense.
Since, (a, b) is the greatest among the common divisors, if (a′, b′) shares
a common divisor, say d, then this would contradict the maximality of
(a, b). Otherwise, we could multiply d with (a, b) with d which would
yield a gcd greater than (a, b) namely, d · (a, b). Thus, d = 1.

9. (a, a) = a and (ak, bk) = k(a, b).

10. (a, 1) = 1 and (a, 0) = a.

11. If b = aq + r, then (a, b) = (a, r).

From the divisibility facts we noted above, (a, b)|a and

(a, b)|b = aq + r

So,
(a, b)|aq + r − (a · q) = r
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Corollary 1. Two special cases are :

(a, a + 1) = 1

(a, a + b) = (a, b)

12. a ≥ (a, b) and b ≥ (a, b).

13. [a, b] ≥ a and [a, b] ≥ b.

Note. Equality occurs in the previous two inequalities iff a = b.

14. For a prime p, either (p, a) = 1 or (a, p) = p.

Since p is a prime, p|a or p 6 |a. So, a ⊥ p when p 6 |a and (a, p) = p
when p|a.

15. If a ⊥ c, then (a, bc) = (a, b). This is true because c won’t share any
common factor with a. So, the gcd would remain unchanged.

16. If a|bc with a ⊥ c, a|b.

Corollary 2. If a|c, b|c then [a, b]|c. In general, if

a1, a2, . . . . . . , an|N

then,
[a1, a2, . . . . . . , an]|N

Corollary 3. If
a1, a2, . . . . . . , an|N

with a1, a2, . . . , an pairwise co-prime integers, then a1a2 · · · an|N .

17. If m is a positive integer divisible by both a and b, then [a, b]|m and
m ≥ [a, b].

18. A very important theorem:

(a, b) · [a, b] = a · b

Here, we shall prove this only using the definition of (a, b) and [a, b] to
make a better sense.

According to the definition, (a, b) is the greatest common part of a and
b. On the other hand, [a, b] contains both the common and uncommon
parts of a and b ( recall #3 ). Thus, (a, b) is included in [a, b]. Let the



12 CHAPTER 2. GCD AND LCM

uncommon part that is left except (a, b) is ua, and the uncommon part
of b is ub. Then

a = (a, b) · ua, b = (a, b) · ub
It follows that

[a, b] = (a, b) · ua · ub
Note that

(a, b) · [a, b] = (a, b)2 · ua · ub
Also,

ab = (a, b)2 · ua · ub
Thus, it is proved.

19. If a ⊥ b, then
am ⊥ bn

for positive integers m,n.

20. If a|b, (a, b) = a.

2.2 Useful Identities In Divisibility

In this section, we are going to discuss some extremely useful identities in
number theory. We will recall them later.

Identity 3 ( Sophie Germain Identity ).

a4 + 4b4 = (a2 + 2ab + 2b2)(a2 − 2ab + 2b2)

Proof. Note:

a4 + 4b4

= (a2)2 + 2 · a2 · 2b2 + (2b2)2 − 4a2b2

= (a2 + 2b2)2 − (2ab)2

= (a2 + 2ab + 2b2)(a2 − 2ab + 2b2)

Corollary 4. If both a, b > 1 then a4 + 4b4 is a product of at least two
numbers greater than 1 i.e. a4 + 4b4 is composite. The only case when it is
prime is a = b = 1. Then a4 + 4b4 = 5, a prime.

Identity 4. For any positive integer n

an − bn = (a− b)(an−1 + an−2b + . . . . . . + abn−2 + bn−1)
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Proof. This can be proved in many ways. One way is to use geometric series.
Denote the sum,

S = an−1 + an−2b + . . . . . . + abn−2 + bn−1

Note that
S · a = an + an−1b + . . . . . . + abn−1 (†)

And,
S · b = an−1b + . . . . . . + bn (‡)

Subtract (‡) from (†). We get,

S(a− b) = an − bn

Which gives us

an − bn = (a− b)(an−1 + an−2b + . . . . . . + abn−2 + bn−1)

This proves the fact.

Corollary 5.
a− b|an − bn

for all n ∈ N

Corollary 6. If n odd, then

an + bn = an − (−b)n

Thus,
an + bn = (a + b)(an−1 + an−2(−b) + . . . . . . + bn−1)

This is very useful, specially,

a + b|an + bn

for all odd n.

Identity 5 ( Fibbonacci-Brahmagupta Identity ).

(a2 + b2)(c2 + d2) = (ac + bd)2 + (ad− bc)2 = (ad + bc)2 + (ac− bd)2

More generally,

(a2 + nb2)(c2 + nd2) = (ac− nbd)2 + n(ad + bc)2 = (ac + nbd)2 + n(ad− bc)2
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The proof is rather straight forward comparison of both sides. So, let’s
avoid them.

Corollary 7. The products of two numbers of the form a2+b2 is of the same
form.

Identity 6 (Bhaskara’s Lemma ).

y2 −Nx2 = k

⇒ (mx + Ny)2

k
−N(

mx + y

k
)2 =

m2 −N

k

Proof. This is only straight algebraic manipulation.
Multiply both sides of the equation by m2−N , add n2x2 +2mNxy+Ny2

and divide by k2. We shall get the desired result. Check this by hand !

Remark 1. This is highly used in solving Pell-Fermat Equations.

Identity 7 (B ézout’s Identity ). There exist integers x, y ( not necessarily
positive ) such that

ax + by = (a, b)

Note. Such x and y are not unique. ( why? )

Hope, you can make the sense about the truth of this theorem. So, I am
avoiding the proof. Because I don’t like this proof much.

Hint. Use gcd property #7 and divisibility property #7.

Corollary 8. If a ⊥ b, then there exists integers x and y such that

ax + by = 1

Identity 8.
(am − bm, an − bn) = a(m,n) − b(m,n)

Proof. We use Euclidean algorithm to prove this.
Without loss of generality, we may assume that, m ≥ n. If m = n,

obviously
(am − bm, am − bm) = a(m,m) − b(m,m) = am − bm

So,we have to prove this for m > n. Assume m = n + k.
Note that,

am − bm = an+k − bn+k = ak(an − bn) + bn(ak − bk)
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This yields
(am − bm, an − bn) = (an − bn, ak − bk)

This is the step of Euclidean algorithm. So, repeating this process, we shall
eventually get that

(am − bm, an − bn) = a(m,n) − b(m,n)
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Chapter 3

Congruence

Congruence is another basic part of number theory. As we said before, we
may call congruence the dual of divisibility. It was first introduced and highly
used by Carl Fredrich Gauss.

3.1 Definitions

Definition 6. If two integers a and b leaves the same remainder upon division
by n, then a and b are said to be congruent modulo n. In other words, a
leaves remainder b upon division by n.

Example. Since 14 and 62 leaves the same remainder 6 upon division by 8,
we say that 14 and 62 are congruent modulo 8.

We denote it by 14 ≡ 62 (mod 8) and say 14 congruent to 62 modulo 8.

Likewise,

11 ≡ 4 (mod 7)

In general, a ≡ b (mod n). Note that these remainders can be negative. So,
we can also take

11 ≡ −1 (mod 6)

Definition 7. b is the residue of a. If 0 ≤ b < n, b is called the minimal
residue of a. Moreover, when |b| ≤ n

2
, then b is called the absolute minimal

residue.

Definition 8. The set

Z[n] = {0, 1, 2, . . . . . . , n− 1}

17



18 CHAPTER 3. CONGRUENCE

is called the complete set of residue class modulo n. But we generally take
the set

Z[n] = {1, 2, . . . . . . n− 1}
so that 0 can’t create any problem. This is called a complete set of residue
class modulo n because any integer gives a remainder upon division by n
which is an element of this set. Also, it is obvious that every integer gives a
unique remainder upon division by n which belongs to this set. This actually
follows from #10 of divisibility.

Definition 9. P (x) is a polynomial a sum of some powers of x ( obviously
finite ). That is

P (x) = anx
n + an−1x

n−1 + . . . . . . + a1x + a0

Here, n is the highest power of this polynomial, which is called degree.

3.2 Propositions

Proposition 1.
a ≡ b (mod n)⇒ n|a− b

Note. The converse also holds ( why? ) i.e.

n|a− b⇒ a ≡ b (mod n)

Proposition 2. For all a ∈ Z, a ≡ a (mod n)

This holds because
n|a− a = 0

Proposition 3. If a ≡ b (mod n), then b ≡ a (mod n).

Since
a ≡ b (mod n)⇒ n|a− b

This also implies
n|b− a

So,
b ≡ a (mod n)

Proposition 4. If
a ≡ b (mod n)

a + nq ≡ b (mod n)
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When a + nq is divided by n, the remainder is a. So, this is true.

Corollary 9.

a ≡ b (mod n)⇒ a± b ≡ b (mod n)

Proposition 5. If
a ≡ b (mod n)

and
b ≡ c (mod n)

then
a ≡ c (mod n)

From the first two congruences see that,

n|a− b

and
n|b− c

Then,
n|a− b + b− c = a− c

This gives,
a ≡ c (mod n)

Proposition 6. If
a ≡ b (mod n)

and
c ≡ d (mod n)

then,
a + c ≡ b + d (mod n)

If you divide 123 by 5, the remainder is 3 and if 3424 is divided, then 4
is the remainder. Now, it makes the sense that when 123 + 3424 is divided
by 5, the remainder would be 3 + 4 = 7 or 2. The claim makes sense. It is
easy to prove as well. The rest is only to note:

a ≡ b (mod n)⇒ n|a− b

c ≡ d (mod n)⇒ n|c− d

Therefore,
n|a− b + c− d = (a + b)− (c + d)

Thus,
a + b ≡ c + d (mod n)
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Proposition 7. For any integer c, if

a ≡ b (mod n)

then
ac ≡ bc (mod n)

Note that if,
a ≡ b (mod n)

a ≡ b (mod n)

adding we get,
2a ≡ 2b (mod n)

Again, adding,
3a ≡ 3b (mod n)

Applying c times,
ac ≡ bc (mod n)

Corollary 10. For 1 ≤ i ≤ n, if

ai ≡ bi (mod n)

then,
a1a2 · · · · · · an ≡ b1b2 · · · · · · (mod n)

Corollary 11.

a ≡ b (mod n)⇒ ak ≡ bk (mod n)

Apply proposition-6 for k times and multiply them, you shall get the result.

It seems that congruences work like equations. We can add, subtract,
multiply just like what we do in the equations. Now, what about division in
congruence¿ Is it possible that if

ac ≡ bc (mod n)

then,
a ≡ b (mod n)

The answer is yes, but with a condition! Let’s see what happen during
division.

Consider the following congruence.

75 ≡ 50 (mod 5)
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If we could divide in general, then the congruence should be

3 ≡ 2 (mod 5)

after division by 25. But this is wrong. So, where the problem is? We can
write this as

5|75− 50 = 25(3− 2)

Here, the factor 25 contain 5 only. If we divide this by 25, we are already
discarding this factor. So, it will definitely hamper our congruence. From
#16 of gcd, of-course we need a factor c which is co-prime to n. Thus, we
have the following proposition.

Proposition 8. If
ac ≡ bc (mod n)

then
a ≡ b (mod

n

(n, c)
)

Corollary 12. If c ⊥ n, and

ac ≡ bc (mod n)

then,
a ≡ b (mod n)

Remark 2. We shall call this cancellation rule.

Proposition 9. If
a ≡ b (mod n)

then
P (a) ≡ P (b) (mod n)

From the definition of polynomial,

P (a) = ana
n + an−1a

n−1 + . . . . . . + a1a + a0

Similarly,
P (b) = anb

n + an−1b
n−1 + . . . . . . + a1b + a0

We need to prove that P (a) and P (b) are congruent modulo n.
Note that,

an ≡ bn (mod n)

⇒ ana
n ≡ anb

n (mod n)
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Likewise,
an−1a

n−1 ≡ an−1b
n−1 (mod n)

. . . . . . . . . . . .

a1a ≡ a1b (mod n)

a0 ≡ b0 (mod n)

Add them. We get

ana
n+an−1a

n−1+. . . . . .+a1a+a0 ≡ anb
n+an−1b

n−1+. . . . . .+a1b+a0 (mod n)

That is,
P (a) ≡ P (b) (mod n)

Proposition 10. If
ax ≡ bx (mod n)

and
ay ≡ by (mod n)

then,
a(x,y) ≡ b(x,y) (mod n)

According to Bézout’s identity we can find integers t, w such that

xt + yw = (x, y)

Using this, note that
axt ≡ bxt (mod n)

And similarly,
byw ≡ byw (mod n)

Multiplying them,
axt+yw ≡ bxt+yw (mod n)

Then,
a(x,y) ≡ b(x,y) (mod n)

We end this section. We shall see some theorems in congruences in the
following section.

Note. Congruences are defined for negative exponent and fractions1 too, but
we keep that out of this discussion.

1That emerges the idea of inverse modulo, search in Wikipedia
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3.3 Theorems On Congruences

Until now, we have just seen some propositions which actually follow from
the definition of congruence. But now, we shall see some theorems related
to congruence. First we shall discuss the famous Fermat’s Little Theorem,
Euler’s Totient Function and then Wilson’s Theorem.

3.3.1 Fermat’s Little Theorem

Fermat’s little theorem is actually the first non-trivial theorem and may be
the most important theorem in congruence.

Theorem 1 (Fermat’s Little Theorem). For any prime p and any integer a,

ap ≡ a (mod p)

It can be re-stated as
p|ap − a

Note that if p|a, the proof is trivial. So, let’s consider the case p 6 |a only.
In this case we can divide the congruence by a,

ap−1 ≡ 1 (mod p)

⇒ p|ap−1 − 1

We shall prove the latter. First let’s prove the following key fact related to
complete set of residue class of p.

Claim 1. For every i ∈ Z[p] and co-prime a to p, the remainder of ai is
unique in Z[p].

Proof. The proof is simple. We are sure that ai must give a remainder which
is in Z[p]. It is sure too that this remainder is unique. But we are not sure
that there exists or not such j such that ai and aj gives the same remainder
in Z[p]. Assume, i, j ∈ Z[p]

ai ≡ aj (mod p)

Divide it by a since a ⊥ p. Then

i ≡ j (mod p)

Equivalently,
p|i− j
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But since both i and j are less than p,

|i− j| < p

Hence,
i− j = 0, i = j

Thus, the remainder of ai is unique for all i ∈ Z[p].
Apply this lemma for all i and then multiply. We shall get that

a · 1 · a · 2 · · · a · (p− 1) ≡ 1 · 2 · · · (p− 1) (mod p)

⇒ ap−1(p− 1)! ≡ (p− 1)! (mod p)

Since p is co-prime to every numbers less than p, p is co-prime to their
product as well.

(p, (p− 1)!) = 1,

we can divide by (p− 1)!. Then,

ap−1 ≡ 1 (mod p)

We have proven it.

Note. The converse of Fermat’s little theorem is false. Remember problem
50 of divisibility section. There you proved

341|2341 − 2

But
341 = 11 · 31

and so, 341 is composite. In such cases, when n is not a prime but

n|an − a.

n is called a pseudo prime.
If n is not prime but for all integers a,

an ≡ a (mod n)

then, n is called a Carmichael number.

Example. The smallest example of such numbers is n = 561. Because

561|a561 − a

for all a ∈ Z.
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3.3.2 Euler’s Totient Function Theorem

Euler’s totient function theorem is also very important in number theory.
In fact, this is the generalization of Fermat’s little theorem. But for the
description of this theorem, we need to know what Euler’s Function is!

Definition 10 (Euler’s totient function). Euler’s totient function ϕ(n) is the
number of positive integers less or equal to n and co-prime to n. In other
words, ϕ(n) is the number of elements in the set {1, 2, . . . . . . n} which are
co-prime to n. Sometimes it is called totient function or phi function too.

Example. If n = 6, there are 2 elements namely 1 and 5 which are co-prime
to 6 in the set {1, 2, 3, 4, 5, 6}. So, ϕ(6) = 2. Similarly, ϕ(12) = 4.

Note. If n = p a prime, then ϕ(p) = p − 1. Since every integer less than p
is co-prime to p, this is obvious.

See some more examples yourself for convenience. Now come back to the
theorem.

Theorem 2. If a ⊥ n, then

aϕ(n) ≡ 1 (mod n)

Proof. The proof is much similar to the Fermat’s one. Let, the co-prime
numbers less than or equal to n are

r1, r2, . . . . . . , rϕ(n)

since there are ϕ(n) elements. Then using the preceding claim and multiply-
ing for ϕ(n) times,

ar1 · ar2 · · · arϕ(n) ≡ r1 · r2 · · · rϕ(n) (mod n)

Since ri’s are co-prime to n for 1 ≤ i ≤ ϕ(n),

aϕ(n) ≡ 1 (mod n)

Therefore, this theorem is also proved.

Corollary 13. If we set n = p, a prime, then we get

aϕ(p) ≡ 1 (mod p)

Which actually means that

ap−1 ≡ 1 (mod p)

That is, Fermat’s theorem is a special case of Euler’s theorem.
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More On Phi Function In number theory, phi function is very necessary
to learn. In this purpose, we discuss two very useful properties.

Definition 11 (Multiplicative Function). A function f is called multiplica-
tive if and only if for m ⊥ n the condition,

f(mn) = f(m)f(n)

is satisfied.

Theorem 3. ϕ is multiplicative. If (m,n) = 1,

ϕ(mn) = ϕ(m)ϕ(n)

Corollary 14. If m1,m2, . . . . . .mn are n pair wisely co-prime positive inte-
gers, then

ϕ(m1m2 · · · · · ·mn) = ϕ(m1)ϕ(m2) · · · · · ·ϕ(mn)

Here we leave its proof. But you can make a sense by investigating and
comparing the values of ϕ(mn) and ϕ(m)ϕ(n) for several m,n.2

But we shall prove the next theorem.

Theorem 4. If p is a prime,

ϕ(pα) = pα−1(p− 1)

Proof. First note the following counting of ϕ(33). You may make a list of 27
numbers from 1 to 33. Then discard the numbers which are sharing a common
factor with 33. You should notice that only the multiples of 3 are sharing
a common factor. There are such 32 multiples. Thus, there will be 33 − 32

numbers which are co-prime to 33. This argument certainly generalizes.
Note that pα will share a factor with pα−1 numbers less than pα. Thus,

there will be total of pα − pα−1 = pα−1(p − 1) numbers co-prime to pα. We
may conclude that

ϕ(pα) = pα−1(p− 1)

Theorem 5. If
n = pa11 pa22 · · · · · · pann

where a1, a2, . . . . . . , an are positive integers and p1, p2, . . . . . . , pn are distinct
primes then,

ϕ(n) = pa1−11 pa2−12 · · · · · · pan−1n · (p1 − 1)(p2 − 1) · · · (pn − 1)

2Consider when m ⊥ n and when m 6⊥ n.
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Proof. In fact, it follows from the two previous theorems. Since p1, p2, . . . . . . pn
are distinct primes,

ϕ(pa11 pa22 · · · · · · pann ) = ϕ(pa11 )ϕ(pa22 ) · · · · · ·ϕ(pann )

Now, set
ϕ(pa) = pa−1(p− 1)

And, the result follows.

Find ϕ(n) for some large numbers like 100, 12100, 569 etc. This will help
you to solve problems.

3.3.3 Wilson’s Theorem

This is another important theorem. This is named after Wilson but it was
originally proved by Lagrange and Gauss individually. Here, we shall discuss
the proof of Gauss here.

If I ask you to count the remainder of 12! modulo 13, what shall you do?
One approach is to multiply all numbers from 1 to 12. Then divide it by 13.
But this is a stupid approach. Because you can’t do the division if I ask you
to do the same for 1979 and 1978!. So you must be tricky. Here the trick
goes. Except the integers 1 and 12, we try to pair up them so that their
product yields a remainder 1 upon division by 13.

12! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12

Note that,
2 · 7 ≡ 1 (mod 13)

3 · 9 ≡ 1 (mod 13)

4 · 10 ≡ 1 (mod 13)

5 · 8 ≡ 1 (mod 13)

6 · 11 ≡ 1 (mod 13)

Then
2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 ≡ 1 (mod 13)

Then
1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12 ≡ 1 · 12 (mod 13)

This means that
12! ≡ 12 ≡ −1 (mod 13)
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Equivalently,
12! + 1 ≡ 0 (mod 13)

Here, note that we have 5 pairs. Because there were 12 positive integers in
12! and we didn’t take 1 and 12 in the pairs. So there will be 13−3

2
= 5 pairs.

For an arbitrary prime p, if such pairing is possible, then there would be p−3
2

pairs. Can we really generalize this result for all primes? If it is possible, we
can conclude that :

Theorem 6. For any prime p,

(p− 1)! ≡ −1 (mod p)

⇒ p|(p− 1)! + 1

Proof by Gauss. The proof is trivial for p = 2 as,

1! ≡ −1 (mod 2)

So, consider p odd prime.
Actually, we are done if we can prove that for all

a ∈ {2, 3, . . . , p− 2}

there exists a unique
x ∈ {2, 3, . . . , p− 2}

such that
ax ≡ 1 (mod p)

Then we could pair up those a’s with their corresponding x’s and multiplying
them out, we shall have that

2 · 3 · 4 · · · (p− 2) ≡ 1 (mod p)

⇒ 1 · 2 · 3 · 4 · · · (p− 1) ≡ −1 (mod p)

⇒ (p− 1)! ≡ −1 (mod p)

⇒ p|(p− 1)! + 1

But are we sure that such x exist for all these a’s at all? The answer is
positive. Remember the corollary of Identity 5, from which since p ⊥ a,
there exist integers x and y such that

ax + py = 1
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Now,

ax + py ≡ ax (mod p)

⇒ ax ≡ 1 (mod p)

The rest is to prove that this x is unique for a fixed a. This proof is same as
the Fermat’s one. So, I am leaving this. But note that a 6= x because this
would imply

a2 ≡ 1 (mod p)

⇒ p|(a + 1)(a− 1)

Since p is an odd prime, p won’t divide both a + 1 and a − 1 because then
we might have

p|(a + 1)− (a− 1) = 2

or p = 2 which is not true. Thus,

p|a + 1 or a− 1

Also,

a < p, p ⊥ a− 1

For this reason,

p|a + 1

⇒ a + 1 ≥ p

⇒ a ≥ p− 1

But again, this is a contradiction since

a ∈ {2, 3, . . . . . . p− 2}

3.4 Some Related Highly Used Ideas

Here are some congruences which we shall use while solving problems relating
diophantine equations or something other. The equations which are to be
solved in positive integers is called diophantine equations.

Example. 2a + 3b = 5c is a diophantine equation if it is asked to solve in
positive integers a, b, c.
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3.4.1 Useful Congruences

Here are some very important congruences you may need to know. They
are left as exercises. But while solving problems, they need not be proved.
These congruences are specially useful for solving diophantine equations, or
divisibility relational problems.

1. x2 ≡ ±1 (mod 3)

2. x2 ≡ 0, 1 (mod 4)

3. x2 ≡ 0,±1 (mod 5)

4. x2 ≡ 0, 1, 4 (mod 8)

5. x2 ≡ 0, 4,−2 (mod 9)

6. x3 ≡ 0,±1 (mod 7)

7. x3 ≡ 0,±1 (mod 9)

8. x4 ≡ 0, 1 (mod 16)

9. x5 ≡ 0,±1 (mod 11)

10. x6 ≡ 0, 1 (mod 9)

11. x6 ≡ 0,±1 (mod 13)

12. x10 ≡ 1 (mod 11)

Now, try to prove those. You should be able to prove them considering
a complete set of residue class of the modulo taken. For example, we can
prove the third congruence as below :

Every integer is one of the form

5n− 2, 5n− 1, 5n, 5n + 1, 5n + 2

Then square all of them and see the residues. You will get cyclically

−1, 1, 0, 1,−1

Thus, our third proposition was true and try the left ones.
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3.4.2 Divisibility Issues

1. If two numbers are of same parity, then their difference is divisible by
2.

2. A number is divisible by 3 if and only if the sum of its digits is divisible
by 3.

Example. 15 is divisible by 3 since 1 + 5 = 6 is divisible by 3.

3. A number is divisible by 4 if and only if the number formed by the last
two digits is divisible by 4.

Example. 10024 is divisible by 4.

4. A number is divisible by 5 if and only if its last digit is 5 or 0.

Example. 55575 and 100 are divisible by 5.

5. A number is divisible by 7, if and only if the difference of two num-
bers formed by separating the last three digits and the rest number is
divisible by 7.

Example. 2401 is divisible by 7 because 401− 2 = 399 = 7 · 57 which
is divisible by 7.

6. A number is divisible by 8 if and only if the number formed by the last
three digits are divisible by 8.

Example. 5512 is divisible by 8 because 512 is divisible by 8.

7. A number is divisible by 9 if and only if the sum of its digits is divisible
by 9.

Example. 3456 is divisible by 9 since 3 + 4 + 5 + 6 = 18, divisible by
9.

8. A number is divisible by 11 if and only if the difference of sums between
the odd positioned digit and even positioned digit is divisible by 11.

Example. 121341 is divisible by 11 since 1 + 1 + 4− (2 + 3 + 1) = 0,
divisible by 11.

You may wonder that why these are put in congruence section. Because
they are easily solved with congruences. They are very often used in prob-
lems.
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Part II

Problems
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Chapter 4

Problems In Divisibility

The problems that have solutions should come first.

4.1 Problems With Solutions

Gaining a good experience in divisibility requires a good practice. So, to have
mastered in this section, you must solve enormous problems. In this purpose,
I have put a huge number of problems. Some of them have solutions, other
don’t. Those are left as exercises. Let’s start our journey.

1. Find all n ∈ N such that
n|2n + 1

Solution. Given,
n|2n + 1

But,
n|2n

So by #7 of divisibility properties,

n|(2n + 1)− (2n) = 1

Thus, the only value for n = 1.

Remark 3. Alternatively,
n|2n + 1

⇒ 2n + 1

n
is a positive integer

⇒ 2n + 1

n
= 2 +

1

n
is a positive integer

35
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which implies that 1
n

is a positive integer. Thus, n = 1.
You may often do this. But when the fractions are too ugly to deal with

in this approach, then divisibility relations come to the rescue. So, try to
make the sense when and how you need to use divisibility. For this, of-course
you must have more practice.

2. Find all primes p such that 17p + 1 is a prime.

Solution. If p > 2, obviously p odd. Otherwise, p would be divisible by 2.
But then 17p is odd and 17p + 1 is even, so not prime. But if p = 2, then
17p + 1 = 35 which is not a prime. So, no such prime exists.

3 (Divisional Olympiad, Dhaka, 2010). Find all positive integers greater than
1 which divides both N + 4 and N + 12.

Solution. Assume that,
d|N + 4

d|N + 12

Then, d|8 and since d > 1, d = 2, 4, 8.

4. Find all n ∈ N such that n + 2|5n + 6

Solution.
n + 2|5n + 6

But,
n + 2|5n + 10

Combining,
n + 2|4

That is, n + 2 is a divisor of 4. Since n + 2 ≥ 3, it follows that n + 2 = 4.
Then n = 2.

Note. We are always trying to eliminate n from the divisibility relation so
that we get only a numerical value. You may also notice that, for doing this
we multiply by some factors and add or subtract and some more operations
are done. This is important to realize that why we are doing so, and why we
are multiplying by that factor. Try to solve them using another factors. See
next problems for more approaches how to remove the variables from these
relations.

5. Find all m ∈ N so that
3m + 1|6m + 8
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Solution.
3m + 1|6m + 2, 6m + 8

=⇒ 3m + 1|6
Since 3m + 1 ≥ 4,

3m + 1 = 6

But this is not possible. So there exist no such m.

6. Find all n that satisfies the relation:

7n + 1|8n + 55

Solution. This time we are going to see a general approach. By the time,
probably you have noticed that we need the coefficients of n equal on both
sides so that after subtraction, they cancel each other. So,

7n + 1|8(7n + 1) = 56n + 8

Again,
7n + 1|8n + 55|56n + 385

⇒ 7n + 1|377

Now, our task is to factorize 377. So, let’s use the property #11 of divisibility.
We need to concentrate on primes less or equal to

√
377 only. Note that

√
377 <

√
400 = 20

So, check with primes 3, 5, 7, 11, 13, 15, 17, 19 only. This easy check shows
that

13|377, 377 = 13 · 19

Then 7n+ 1 = 17 or 19 or 377. No case gives a valid result. So, no solution.

7. Every primes greater than 3 are of the form 6k ± 1.

Solution. Notice, we can represent any integer in one of the form 6k, 6k −
1, 6k − 2, 6k + 1, 6k + 2, 6k − 3.
But 6k − 3, 6k + 2, 6k − 2, 6k − 2 are never primes ( except 6k − 3 = 3 for
k = 1, that’s why we discarded 3 at first ). So, if a positive integer is a prime,
then it must be of the form 6k ± 1.

8. a and b are positive integers and x, y are integers such that,

ax + by = 1

Prove that
(a, b) = 1, (a, y) = 1, (x, y) = 1, (x, b) = 1.
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Solution. Let (a, b) = g, a = ga′, b = gb′ where (a′, b′) = 1.Then

g(a′x + b′y) = 1

⇒ g|1, g = 1

The other cases are exactly the same.

Corollary 15. The converse of Identity 5 is also true.

9. Find the maximum value of x such that x + 25|(x + 2)2

Solution.
x + 25|x2 + 4x + 4

x + 25|(x + 25)(x− 25) = x2 − 625

Subtracting yields,
x + 25|4x + 629

and also
x + 25|4x + 100

Then again subtract to get
x + 25|529

Since,
x + 25 ≥ 529

the maximum value of

xmax = 529− 25 = 504

10 (Secondary Special Camp 2010 Number Theory Problem 1(b)). Find all
positive integers d such that d divides n2+1 and (n+1)2+1 for some natural
n.

Solution.
d|n2 + 1, n2 + 2n + 2

⇒ d|2n + 1

Again, d|2n + 1 Moreover,

2n + 1|4n2 − 1

n2 + 1|4n2 + 4

Hence,
d|4n2 + 4

Finally, we have d|5 i.e. d = 1, 5.
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11. Prove that
(a, bc) = (a, (a, b) · c)

Solution. Let (a, b) = g, a = ga′, b = gb′ where (a′, b′) = 1.
Then,

(a, bc) = (ga′, gb′c)

Using gcd property #9, we have

(a, bc) = g(a′, b′c)

Since a′ ⊥ b′, using #15,
(a, bc) = g(a′, c)

On the other hand from divisibility property #9,

(a, (a, b) · c) = (ga′, gc) = g(a′, c)

Of-course, both of them are equal.

12 (IMO - 1959,1). Prove that the fraction 21n+4
14n+3

is irreducible.1

Solution. From the definition of irreducible fraction, it is clear that it is
sufficient to prove that

(21n + 4, 14n + 3) = 1

And we shall solve this in several ways to see some beautiful applications of
divisibility.

1. Assume (21n + 4, 14n + 3) = g. Using gcd property #1,

g|21n + 4, g|14n + 3

Note that,
21n + 4|2(21n + 4) = 42n + 8

14n + 3|3(14n + 3)

Then

g|42n + 8, 42n + 9 =⇒ g|(42n + 9)− (42n + 8) = 1, g = 1

Question. Why did we multiply the relations by 2 or 3 here. Which
should drive you to do so?

1A fraction is irreducible if we can’t remove a common factor from the denominator
and the numerator.



40 CHAPTER 4. PROBLEMS IN DIVISIBILITY

2. For this solution, let’s use Euclidean algorithm.

(14n + 3, 21n + 4) = (14n + 3, 7n + 1)

after subtracting 14n + 3 from 21n + 4. Again,

(7n + 1, 14n + 3) = (7n + 1, 7n + 2) = (7n + 1, 1) = 1

Thus, we are done.

3. This time we shall use Identity 5. According to Corollary 6, the proof
will be complete if we can find integers x, y so that

(14n + 3)x + (21n + 4)y = 1

Now just note that :

3(14n + 3)− 2(214n + 4) = 1

Remark 4. All three proofs are equivalent. For instance, see that while we
multiply by 3, 2 in solution 1, we actually did the same in solution 3.

13 (Euler). Show that 232 + 1 is divisible by 641.

Solution. First note that :

641 = 16 + 625 = 24 + 54

641 = 640 + 1 = 5 · 128 + 1 = 5 · 27 + 1

It is very easy to note:

a + 1|a4 − 1

After setting a = 5 · 27, we have

641|54 · 228 − 1

Furthermore,

24 + 54|232 + 54 · 228

Now a subtraction shows that,

641|232 + 1
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Remark 5. The numbers of the form 22n + 1 is called the Fermat’s Number
and the nth Fermat’s number is denoted by Fn.

Fn = 22n + 1

Fermat noticed that some first numbers of this form are primes and conjec-
tured that Fn are always primes. Euler first disproved Fermat showing the
counter example above that

641|F5

14. Prove that for all odd k ∈ N,

1 + 2 + . . . . . . + n|1k + 2k + . . . . . . + nk

Solution. You should know that,

1 + 2 + . . . . . . + n =
n(n + 1)

2

If you don’t know try to prove it yourself. It can be proved in many ways.
Now, it suffices to prove that

n(n + 1)|2(1k + 2k + . . . . . . + nk)

Remember Corollary 3 in gcd properties. We are done if we can prove the
following two independently :2

n|2(1k + 2k + . . . . . . + nk)

n + 1|2(1k + 2k + . . . . . . + nk)

Again re-call Corollary 6,

n = 1 + (n− 1)|1k + (n− 1k), 2k + (n− 2)k, . . .

This shows the first part. For the second part, note that

n + 1|1k + nk, 2k + (n− 1)k, . . .

Therefore, the second part is also true.

15. Find the maximum value of n such that n3+10
n+10

is a positive integer.

2why is it sufficient?
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Solution. From the problem statement,

n + 10|n3 + 10

Also,
n + 10|n3 + 1000

Thus,
n + 10|990

implying that,
nmax = 980

16 (IMO - 1964,1). Prove that n4 + 4n is always composite for n > 1.

Solution. If n is even, obviously n4 + 4n is an even number greater than 2,
hence divisible by 2 at least.

Now, consider n > 1 odd. Let

n = 2a + 1

We can re-write

n4 + 4n = n4 + 42a+1 = n4 + 4 · (2a)4

This is of the form a4 + 4b4 which is composite by Corollary 4.

17. Find all n ∈ N such that

5n + 1|n6 + n4

Solution.
5n + 1|n4(n2 + 1)

but
n ⊥ 5n + 1

So from #19 of divisibility we have

n4 ⊥ 5n + 1

giving,
5n + 1|n2 + 1⇒ 5n + 1|n2 − 5n = n(n− 5)

Again,
n ⊥ 5n + 1

and so
5n + 1|n− 5

It is evident that the absolute value of n− 5 is less than 5n + 1. Therefore,

n− 5 = 0 =⇒ n = 5
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18. When is n5 + n4 + 1 a prime?

Solution. Let’s try to factorize n5 + n4 + 1.
Note that,

n5 + n4 + 1 = (n2 + n + 1)(n3 − n + 1)

We need
n3 − n + 1 = 1

This produces the solution n = 1.

Question. What should lead us to this factorization?

19. Find all n ∈ N0 such that

2n + n|8n + n

Solution. Does the fact 8 = 23 suggest you anything?
Yes, it suggests us to use Corollary 5.

a + b|a3 + b3

Then,
2n + n|(2n)3 + n3 = 8n + n3

and also
2n + n|8n + n

These two yields
2n + n|n3 − n

Now, let’s search for n such that

2n + n > n3 − n

Because then we can conclude

n3 − n = 0

which is not possible except n = 0, 1. A quick search shows that the conve-
nient choice for n is 10. Since then

1034 > 990

What can be the way to prove that

2n + n > n3 − n



44 CHAPTER 4. PROBLEMS IN DIVISIBILITY

for n > 9? It is induction. If you don’t know about induction, consult with
Wikipedia.

The base case n0 = 10 is true as we have shown before. Let be true n = k
for some k ∈ N, k > 10. Then we have

2k + k > k3 − k

Now let’s prove its truth for n = k + 1.
Note that

(k + 1)3 − (k + 1) = k3 + 3k2 + 2k

The inequality is reduced to

2k+1 + k + 1 > k3 + 3k2 + 2k

Again, notice

2 · 2k + k + 1 = 2(2k + k)− k + 1 > 2(k3 − k)− k + 1 = 2k3 − 3k + 1

We are done if we can show that

2k3 − 3k + 1 > k3 + 3k2 + 2k

Or equivalently,

k3 + 1 > k3 > 3k2 + 5k ⇒ k2 > 3k + 5

Which is true since
k2 = k · k > 10k > 3k + 5

Thus we need to check only the values of

0 ≤ n ≤ 9

Checking shows that the only solutions are

n ∈ {1, 2, 4, 6}

20 (Spanish Mathematical Olympiad-1996). If

a + 1

b
+

b + 1

a

is a positive integer, then
a + b ≥ (a, b)2
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Solution.
a + 1

b
+

b + 1

a
=

a2 + b2 + a + b

ab

Let (a, b) = d, a = da′, b = db′ with (a′, b′) = 1.Then,

ab|a2 + b2 + a + b

And also

d2|a2, d2|b2

implying that,

d2|a2 + b2

Again,

d2|ab

d2|ab|a2 + b2 + a + b

⇒ d2|a + b

⇒ d2 ≤ a + b

21. Find all natural n that

1000m − 1|1978m − 1

Solution.

1000m − 1|1978m − 1000m = 2m(989m − 500m)

But

(2m, 1000m − 1) = 1

And hence,

1000m − 1|989m − 500m

Note the following contradicting inequality

989m − 500m < 1000m − 1

22 (IMO - 1998, Problem 4). Find all pairs of positive integers (a, b) such
that

ab2 + b + 7|a2b + a + b
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Solution. We use divisibility relations to solve this problem.

ab2 + b + 7|a2b + a + b

So,
ab2 + b + 7|b(a2b + a + b) = a2b2 + ab + b2

Also
ab2 + b + 7|a(ab2 + b + 7) = a2b2 + ab + 7a

Thus,
ab2 + b + 7|b2 − 7a or 7a− b2

If b = 1, then
a + 8|7a− 1

⇒ a + 8|7a + 56

⇒ a + 8|57

Since a + 8 > 3 and 57 = 3 · 19. We have

a + 8 = 19, a = 11 or a + 8 = 57, a = 49

Now, let’s assume b > 1. Then the absolute value of b2 − 7a is less than
ab2 + b + 7. So,

b2 − 7a = 0

⇒ b2 = 7a

⇒ 7|b

Let b = 7c. This gives a = 7c2. Check that (a, b) = (7c, 7c2) is a solution
indeed.

Therefore all solutions are given by,

(a, b) = (11, 1), (49, 1), (7c2, 7c)

23. Count (x2 − x + 1, x2 + x + 1)

Solution. Let,
g = (x2 − x + 1, x2 + x + 1)

Since x2 − x + 1 and x2 + x + 1 both odd, g is odd too.

g|x2 − x + 1

g|x2 + x + 1
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Subtracting,

g|2x

Since g odd,

g|x|x2 − x

⇒ g|x2 − x + 1− (x2 − x) = 1

Thus, g = 1.

24. Find all integer solutions to

1

x
+

1

y
=

1

z

Solution. Re-write the equation as

z =
xy

x + y

We need

x + y|xy

Let’s assume

(x, y) = g, x = gx′, y = gy′

Here,

(x′, y′) = (x′, x′ + y′) = (y′, x′ + y′) = 1 (∗)

Now,

z =
gx′y′

x′ + y′

From (∗),
x′ + y′|g

Let g = (x′ + y′)k. Then,

z = x′y′k, x = (x′ + y′)kx′, y = (x′ + y′)ky′

25. Find all m such that 2m+1 −m2 is a prime.

Solution. If m even, obviously 2m+1−m2 is an even integer greater than 2,
so not prime. Therefore, m odd.

Let m = 2k + 1. Then

2m+1 −m2 = (2k+1 + m)(2k+1 −m)
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The latter implies that

2k+1 − 2k − 1 = 1

=⇒ 2k − k = 1

If k > 1, then
2k − k > 1

So, k = 0, 1. Then,
m = 1, 3

26. Prove that if,
am − 1|an − 1

then m|n.

Solution. Here are two solutions.

1. Set b = 1 in the Identity 6. Then applying #20,

(am − 1, an − 1) = a(m,n) − 1 = am − 1

So, (m,n) = m i.e. m|n.

2.
am − 1|an − 1

⇒ am − 1|an − am = am(an−m − 1)

Certainly,
am − 1 ⊥ am

So,
am − 1|an−m − 1

Again,

am − 1|an−m − am = am(an−2m − 1)

⇒ am − 1|an−2m − 1

Let n = mq + r, r < m. Then repeating this process,

am − 1|an−mq − 1

⇒ am − 1|ar − 1

But
ar − 1 < am − 1

So,
ar − 1 = 0⇒ r = 0

Then n = mq i.e. m|n.
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27 (Masum Billal). Construct a non-decreasing sequence ai of positive inte-
gers ( i.e. ai+1 ≥ ai ) such that

(ai+2, ai+1) = [ai, ai−1]

Solution. We will show that ai = a satisfies the given condition where a is
a constant positive integer.

It suffices to show that

ai+1 = ai for all i

We already know that

ai|[ai, ai−1]

Also,

(ai+1, ai+2)|ai+1

Thus,

ai|[ai, ai−1] = (ai+1, ai+2)

ai|ai+1

(ai+1, ai+2) = [ai, ai−1]

It immediately follows that,

ai+1 = ai

as we desired to show.

28 (Romanian Mathematical Olympiad-2002). Let n be an even positive
integer. Find all co-prime positive integers a and b such that

a + b|an + bn

29. Since n even, from the identity

a2 − b2 = (a + b)(a− b)

we have

a + b|an − bn

Also, we have

a + b|an + bn

Thus,

a + b|2an
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But a ⊥ a + b,3 so,
a + b|2

Hence,
a + b = 2

giving solution
a = 1, b = 1

4.2 Problems Without Solutions

30. The difference of two odd numbers is divisible by 2 but not by 4. Prove
that their sum is divisible by 4.

31. Prove that if the sum of two numbers is a prime, then they must be
co-prime to each other.

32. Find all a such that
a + 23|(a + 1)2

33. Prove that for all odd n ∈ N,

n2|13 + 23 + . . . . . . + n3

34. Prove that if p is a Sophie Germain prime,4 then p and q must be of the
form 6n− 1.

35. Prove that the square of an odd integer leaves a remainder 1 upon division
by 8.

36. Prove that if m|n,
am − 1|an − 1

37. Find all a,m, n ∈ N such that

am − 1|an + 1

38. Decide if a number ending with some zero’s and starting with some two’s
is a perfect square or not ¿

39. Prove that for a prime p > 3,

24|p2 − 1

3make sure you understand why it is so!
4A prime p is called to be Sophie Germain Prime if q = 2p + 1 is also a prime. For

example, 3 is such a prime since 2 · 3 + 1 = 7, a prime.
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40. Is #18 of gcd true for more than two numbers?

41. Find all pairs of (a, b) ∈ N such that

2a − 1|2b + 1

42. Find all pairs of (a, b, c) ∈ N such that

2a − 1|2b + 2c + 1

43. Is 222011+2011 composite?

44. Find the maximum n such that n consecutive integers are pair-wisely
co-prime.

45. If 2n + 1 and 3n + 1 are squares, prove that 8|n

46. If 8n + 1 is a prime, prove that n must be a power of two. Generalize
this!

47. Find all positive integer pairs of (a, b) such that

b

a
+

a

b

is a positive integer.

48. Complete the proof of Bézot’s Identity ( Identity 5 ).

49. Prove that for all odd n ∈ N,

n|1n + 2n + . . . . . . + (n− 1)n + nn

50. Decide if N a prime, where

N = 4449 + 81.

51. Prove that the sum of divisors of a perfect square is odd.

52. Prove that the diophantine equation

12x + 54y = 65464

has no solutions in integers.5

5More generally, prove that if
ax + by = c

then the equation has solutions in integers if and only if

(a, b)|c

Prove it!
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53. If
(a, b) + [a, b] = a + b

then one of a, b divides another.

54. Prove that
341|2341 − 2

55. Prove that there exists an infinite pairs of positive integer pairs (a, b)
such that

a + b2|a3 + b3

56. Find an infinite quadruple (a, b, c, d) such that

ac− bd = 1

and they are pair-wisely co-prime.

57. The numbers of the form 2n − 1 are called Mersenn Numbers.

Mn = 2n − 1

Prove that if Mn is a prime, then n is a prime too.

58. Find all pairs of (a, b) ∈ N so that

ab|a3 + b3

59. Decide if we can find infinitely many pairs of (a, b) such that

ab + 1|a2 + b2 + 3

60. If m = 4a + 3 is divisible by 11, then what is the remainder of a4 upon
division by 11?

61. Prove that there exists an infinite pairs of positive integers (a, b) such
that

ab + 1|a2 + b2

62. Prove that there exists infinitely many (x, y) ∈ N such that

xy + 1|x2 + y2 + 1

63. Prove that there exist an infinite pairs of (x, y) ∈ N such that

x + y|x2 + y2 + x + 1
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64. Let a be an odd integer. Prove that

2k+1|a2k − 1

65. Find all natural solutions to the equation

pa + pb = pc

where p is a prime.

66. Find an infinite (a, b, c) such that

a + b + c|3abc
67. For any prime factor p of n, if

p|n
p
− 1

prove that, n is square-free.6

68. Find all primes p such that p− 4 is a perfect 4th power7.

69. Find all n ∈ N such that

3|n · 2n − 1

70. Find all odd n such that
n|3n + 1

71. Prove that the product of two numbers of the form a2 + ab+ b2 is of the
same form.

72 (Samin Riasat). Show that if a number has k digits and its repeat8 number
is a perfect square, then 10k + 1 is never square-free.9

73. Prove that both 2n− 1 and 2n + 1 can’t be prime at a time i.e. if one of
them is prime, then the other is composite.

74. Does there exist an infinite positive integer n such that

n|2n + 1

75 (IMO 1990, 3). Find all positive integers such that:

n2|2n + 1

6A number is called square-free if it has no square factor i.e. it has no divisor which is
a perfect square. For example, n = 12 is not square-free whereas n = 78 is.

7A number is called perfect k-th power if it can be expressed as nk for n, k > 1.
8The repeat of a number is called the number we get writing the number besides the

original number. For example, the repeat of 123 is 123123.
9The original problem was:

Find a repeat number which is a perfect square( if exists ).
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Chapter 5

Problems In Congruence

5.1 Problems With Solutions

76. What is the remainder if 22011 is divided by 7.

Solution. From theorem 1, since 2 ⊥ 7,

26 ≡ 1 (mod 7)

⇒ 26·335 ≡ 1 (mod 7)

⇒ 22010 ≡ 1 (mod 7)

⇒ 22011 ≡ 2 (mod 7)

Thus the remainder is 2.

77. What is the last digit of 381.

Solution. First note that the last digit of a number is nothing but the
remainder of the number upon division by 10. Now, the task is to determine
the remainder of 381 when divided by 10.

We give two solutions.

1. See the remainders when the powers of 3 are divided by 10.

31 ≡ 3 (mod 10)

32 ≡ 9 (mod 10)

33 ≡ 7 (mod 10)

34 ≡ 1 (mod 10)

55
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35 ≡ 3 (mod 10)

. . . . . . . . . . . . . . .

It is obvious that from now, the sequence of last digit is periodic. The
sequence is

3, 9, 7, 1, 3, . . .

Since the period is 4, it is enough to find the last digit of the exponent
modulo 4.

Therefore,
381 ≡ 31 ≡ 3 (mod 10)

Then, the last digit is 3.

2. Apply Euler’s totient theorem.

3ϕ(10) ≡ 1 (mod 10)

⇒ 34 ≡ 1 (mod 10)

⇒ 380 ≡ 1 (mod 10)

⇒ 381 ≡ 3 (mod 10)

Thus the last digit is 3, as we deduced before.

Note. The latter solution shows why the sequence is periodic and the period
is 4.

You can generalize that if a ⊥ 10, then the sequence of the last digit is
periodic with a period 4.

78. Prove that
561|a561 − a

Solution. Note that
561 = 3 · 11 · 17

Now, again,
561|a(a560 − 1)

If any of 3, 11, or 17 is not co-prime to a, then it is of-course divisible by 3,
11 or 17. Else, we have

a2 ≡ 1 (mod 3)

⇒ a560 ≡ 1 (mod 3)
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For 11,

a10 ≡ 1 (mod 11)

⇒ a560 ≡ 1 (mod 11)

Similarly, since

17− 1 = 16|560

we can say,

a560 ≡ 1 (mod 16)

It turns out that,

3, 11, 17|a560 − 1

Since 3, 11, 17 are co-prime to each other from Corollary 2,

3 · 11 · 17 = 561|a560 − 1

Note. 561 is the first Carmichael number.

79. Prove that for all a, b ∈ Z and p prime,

p|abp − bap

Solution. If one of a, b is divisible by p, we are done. If not, note that

ap−1 ≡ 1 (mod p)

and

bp−1 ≡ 1 (mod p)

Then from proposition 5,

ap−1 ≡ bp−1 (mod p)

Multiplying both sides by ab,

apb ≡ bap (mod p)

⇒ p|abp − bap

80. Is 20102010 − 1 divisible by 2011?
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Solution. The answer is positive. In fact, it is straight forward from theorem
1. But how are you sure that 2011 is a prime? Yes, use the same idea we
used in problem 6 to decompose 377 in primes. But you need to check for
primes upto 43 because

452 = 2025 > 2011

So the nearest prime will be 43. Do this yourself. And since

2011 ⊥ 2010

conclude that
2011|20102010 − 1

81. Find all integers x, y, z such that

15x2 − y2 = 1234

Solution. What should strike you? This equation has no solutions! But
how to prove that?

Re-call item 1 in section 2.4. This will show you

y2 ≡ 0 or − 1 (mod 3)

Now, take modulo 3 in the equation. We get

15x2 − y2 ≡ 1234 ≡ 1 (mod 3)

⇒ −y2 ≡ 1 (mod 3)

⇒ y2 ≡ −1 (mod 3)

Since both sides are equal, we must have the same remainder upon division
by the same number in the equation. But we have found a fact which is not
satisfied by any integers. Therefore, no solutions.

Remark 6. It is a common tactic to use congruence on integer equations
to derive a contradiction or informations about the properties of integers (
such as parity ) satisfying that particular equation. But there is no rule
which modulo should be taken for an equation. This must be gained by your
thinking power and more practice. This is a very popular idea of solving
problems. But don’t think that we don’t have solutions in all cases. You
have to be experienced for solving such equations.

82. Prove that for a prime p > 3,

p|(p− 2)!− 1
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Solution. From theorem 6,

(p− 1)! ≡ 1 (mod p)

⇒ (p− 1)! ≡ (p− 1) (mod p)

⇒ (p− 2)! ≡ 1 (mod p)

We can divide by p− 1 since p⊥p− 1.

83. Prove the fact 6 in section 3.4.1 without using the idea of complete set
of residues.

Solution. If 7|x, then
x3 ≡ 0 (mod 7)

Else, we have 7 6 |x and
x6 ≡ 1 (mod 7)

Then we can take square root on the congruence. That is,

x3 ≡ ±1 (mod 7)

If p is a prime and
a2 ≡ b2 (mod p)

then
a ≡ ±b (mod p)

Remark 7. We could take square root on this congruence.
Explanation :

7|x6 − 1 = (x3 + 1)(x3 − 1)

7 can’t divide both of x3 + 1 and x3 − 1 because that would imply

7|(x3 + 1)− (x3 − 1) = 2

a contradiction! So, either x3 + 1 or x3 − 1 is divisible by 7.

84. Prove that
7|22225555 + 55552222

Solution. Since 7 is a prime, Fermat’s theorem is an obvious approach.
Note that,

2222 ≡ 3 (mod 7)

5555 ≡ 4 (mod 7)
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Also,

ϕ(7) = 6

So,

46 ≡ 1 (mod 7)

⇒ 42220 ≡ 1 (mod 7)

⇒ 42222 ≡ 42 (mod 7)

=⇒ 55552222 ≡ 2 (mod 7)

And,

36 ≡ 1 (mod 7)

⇒ 35550 ≡ 1 (mod 7)

⇒ 35555 ≡ 35 (mod 7)

⇒ 22225555 ≡ 5 (mod 7)

Then

22225555 + 55552222 ≡ 2 + 5 ≡ 0 (mod 7)

85. Find all positive integer solutions to :

a2 + b2 = 1234567899091

Solution. There is a large number in the right side. Nothing to be afraid,
because actually it has nothing to do with this problem. In fact, this equation
has no solutions. So, what should be our approach?

Remember item 2 of section 2.4 . We have

a2 ≡ 0, 1 (mod 4)

and

b2 ≡ 0, 1 (mod 4)

Thus,

a2 + b2 ≡ 0, 1, 1 + 1 = 2 (mod 4)

But a2 + b2 can never be 3 (mod 4). So, we have found a contradiction!

86. Find all integers a1, a2, . . . . . . , a14 such that

a41 + a42 + . . . . . . + a414 = 1599



5.1. PROBLEMS WITH SOLUTIONS 61

Solution. When you see the power 4, you should re-call item 8. Also, the
number 1599 suggests the modulo 16. This modulo will yield a remainder
of left side which ranges from 0 to 14 since each of a41, a

4
2, . . . . . . , a

4
14 gives a

remainder 0 or 1. But
1599 ≡ 15 (mod 16)

Since we can never attain 15 in left side, it is a clear contradiction.

87. Let,
an = 6n + 8n

Find the remainder when a49 is divided by 49.

Solution. Note that both 6 and 8 are co-prime to 49 and

ϕ(72) = 7 · (7− 1) = 42

so,
642 ≡ 1 (mod 49)

and
842 ≡ 1 (mod 49)

Now, we have to count 67 and 87 modulo 49. Be tricky. One approach is to
count 67 and 87 directly and then divide it by 49. But we can do it more
easily.

62 ≡ −13 (mod 49)

⇒ 64 ≡ 132 ≡ 169 ≡ 22 (mod 49)

⇒ 64 · 62 ≡ 22 · (−13) (mod 49)

⇒ 66 ≡ 8 (mod 49)

⇒ 67 ≡ 48 ≡ −1 (mod 49)

⇒ 649 ≡ −1 (mod 49)

On the other hand,
82 ≡ 15 (mod 49)

⇒ 84 ≡ 152 ≡ −20 (mod 49)

⇒ 84 · 82 ≡ 15 · (−20) ≡ −6 (mod 49)

⇒ 87 ≡ (−6) · 8 ≡ 1 (mod 49)

⇒ 849 ≡ 1 (mod 49)

Then,
649 + 849 ≡ 0 (mod 49)

Therefore, we get:
49|a49
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Note. We could restate the problem as :
Prove that there exists at least one positive integer n such that

n|an

Though the solution would remain same, this problem will be definitely a
harder one than the previous.

88. Find all n such that

44 . . . . . . 44 (ntimes 4)

is a perfect square.

Solution.
44 . . . . . . 44 = 4 · 11 . . . . . . 11

If n > 1, then 44 . . . . . . 44 ends in 11. From the theorem 4 of section 3.4.2,
the number is

11 ≡ 3 (mod 4)

But every square is either 0 or 1 modulo 4. Thus, n = 1 and 4 is the only
such number.

89. Find all positive integer solutions to the equation :

2n − 1 = 3m

Solution. First see that

2n − 1 ≡ 0 (mod 3)

If n odd,
2n − 1 ≡ (−1)n − 1 ≡ −2 (mod 3)

That is, 2n − 1 is not divisible by 3. So, n must be even. Let n = 2k. We
have

(2k + 1)(2k − 1) = 3m

Since there is no other prime factors other than 3, we must have 2k + 1 and
2k − 1 both a power of 3. Say,

2k − 1 = 3a, 2k + 1 = 3b

where a + b = m.
3b − 3a = 2

If a > 0, we shall have that 3|2. Therefore, a = 0 and then b = 1 leading to
the solution m = 1, n = 2.
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90. Prove that the sum of squares of three consecutive is not a square.

Solution. Let the integers be n− 1, n, n + 1. Then

(n− 1)2 + n2 + (n + 1)2 = 2(n2 + 1) + n2 = 3n2 + 2

This is congruent to 2 modulo 3. So, it is never a square.

91. Prove that if p and 8p2 + 1 both are primes then 8p2 − 1 is a prime too.

Solution. If p = 2, we have 8p2 + 1 = 33 not a prime. Now see when p = 3,
we have

8p2 + 1 = 73

and

8p2 − 1 = 71

both prime. Consider p > 3. Then obviously

p2 ≡ 1 (mod 3)

⇒ 8p2 + 1 ≡ 8 + 1 ≡ 0 (mod 3)

So, it won’t be a prime. Thus, p = 3 is only such prime.

Question. What should make you convinced about taking (mod 3) ?

92. Find all n such that

n|2n − 1

Solution. Let p be the smallest prime factor of n.1 Of-course n odd, so p
odd too and

p|2n − 1

⇒ 2n ≡ 1 (mod p)

Moreover, from Fermat’s theorem,

2p−1 ≡ 1 (mod p)

Thus from proposition 10,

2(p−1,n) ≡ 1 (mod p)

1This idea is a very important tactic for solving a good number of problems, even at
the IMO
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The crucial argument: note that p − 1 won’t share any prime factor with
p− 1. If n shares a prime with p− 1 that must be strictly less than p. But
it would contradict the fact that p is the smallest prime factor of p. Then

(n, p− 1) = 1

Conclusion :

21 ≡ 1 (mod p)

Clearly contradiction!
This means that n can’t have any prime factor i.e. n = 1.

93. If2

x3 + y3 = z3

then one of x, y, z is divisible by 7.

Solution. Remember

x3 ≡ 0,±1 (mod 7)

If x3 ≡ 0 (mod 7), we are done. Else let

x3 ≡ ±1 (mod 7)

Also, y3 ≡ ±1 (mod 7) and z3 ≡ ±1 (mod 7) If x3 ≡ 1 and y3 ≡ 1, then

±1 ≡ z3 ≡ 2

so it is a contradiction.
Similarly,

x3, y3 6≡ −1

Then one of

x3 ≡ 1, y3 ≡ −1

And then

x3 + y3 ≡ 0 (mod 7)

⇒ z3 ≡ 0 (mod 7)

Remark 8. Here the modulo taken everywhere is 7, so sometimes it is not
stated.

94. Find all primes p such that 2p + p2 is a prime.

2Don’t be tempted by Fermat’s Last Theorem, because it is to be proved if it holds.
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Solution. If p = 2, it is even greater than 2. So, p must be odd.
If p = 3, 23 + 32 = 17, a prime. If p > 3, we have

p2 ≡ 1 (mod 3)

Moreover,
2p ≡ (−1)p ≡ −1 (mod 3)

Summing these yields
2p + p2 ≡ 0 mod 3

Thus, it is not a prime.
Hence, p = 3 is the only solution.

5.2 Problems Without Solutions

95. Prove the congruences in section 2.4.1 .

96. Prove the divisibility facts in section 2.4.2 .

97. Without Fermat’s theorem, prove that

13|n13 − n

10|a5 − a

for any n, a ∈ N

98. Generalize the fact 1, 3, 6. Find the condition, when a number is divisible
by 2k.

99. Find all integers a such that a + 3, a− 1 and a + 4 are primes.

Hint. Think mod3.

100. Prove that the product of n consecutive integers is divisible by n!.

Hint. Is there anything to do with binomial coefficient?

101. Find all positive integer solutions to the equation :

2n + 1 = 3m

102. Prove that the sum of squares of five consecutive integers is not again
a square.



66 CHAPTER 5. PROBLEMS IN CONGRUENCE

103. x, y, z are positive integers such that:

x3 + y3 = z3

then 3|xyz.

104. Find all solution to the diophantine equation :

3x − 2y = 7

105. Find another Carmichael number.

106. Find all primes p, q such that

pq|(5p − 2p)(5q − 2q)

107. Prove that,
77|3636 + 4141

108. Does there exists a prime three distinct primes p, q, r such that,

p|q + r

q|r + p

r|p + q

109. Find all n such that ϕ(n) is odd.

110. Find the last three digits of 71999




