Practice Problem: ONTC Day 2

August 26, 2015

There are all sorts of problems. You don't have to send solutions for practice problems. Just comment on the post.

1. Practice Problems

Problems are not in increasing order of difficulties.

Problem 1.1. Determine the largest n so that $n+5 \mid n^{4}+1395$.
Problem 1.2. Determine the number of positive integers smaller than 1000000, that are also perfect squares and give a remainder 4 when divided by 8 .

Problem 1.3. Does there exist a positive integer n such that $n^{2}+2 n+2015$ is a perfect square?

Problem 1.4. Given are positive integers r and k and an infinite sequence of positive integers $a_{1} \leq a_{2} \leq \ldots$ such that $\frac{i}{a_{i}}=k+1$. Prove that there is a j so that $\frac{j}{a_{j}}=k$.

Problem 1.5. A positive integer is called wacky if its decimal representation contains 100 digits, and if by removing any of those digits one gets a 99 -digit number divisible by 7 . How many wacky positive integers are there?

Problem 1.6. We say that a positive integer is an almost square if it is a product of two positive integers differing by 1. Prove that every almost square is a ratio of two almost squares.

Problem 1.7. Does there exist an infinite sequence of positive integers such that for every positive integer k, the sum of every k consecutive terms of this sequence is divisible by $k+1$?

Problem 1.8. We say that a positive integer is interesting if the sum of its digits is a prime number. Determine the greatest possible number of interesting numbers which may appear among five consecutive positive integers.

Problem 1.9. Integers $a, x_{1}, x_{2}, \ldots, x_{13}$ satisfy the relation:

$$
a=\left(1+x_{1}\right)\left(1+x_{2}\right) \cdots\left(1+x_{13}\right)=\left(1-x_{1}\right)\left(1-x_{2}\right) \cdots\left(1-x_{13}\right)
$$

Prove that, $a x_{1} x_{2} \cdots x_{13}=0$.
Problem 1.10. Let $n>1$ be an integer. Consider all the fractions $\frac{1}{n}, \frac{2}{n}, \ldots, \frac{n-1}{n}$ and reduce each of them to an irreducible form. Denote the sum of numerators of the obtained fractions by $f(n)$. Find all n such that $f(n)+f(2015 n)$ is odd.

Problem 1.11. Let a and b be two positive integers satisfying $\operatorname{gcd}(a, b)=1$. Consider a pawn standing on the grid point (x, y). A step of type A consists of moving the pawn to one of the following grid points: $(x+a, y+a),(x+a, y-a),(x-a, y+a),(x-a, y-a)$. A step of type B consists of moving the pawn to $(x+b, y+b),(x+b, y-b),(x-b, y+b),(x-b, y-b)$. Now put a pawn on $(0,0)$. You can make a (finite) number of steps, alternatingly of type A and type B, starting with a step of type A. You can make an even or odd number of steps, i.e., the last step could be of either type A or type B. Determine the set of all grid points (x, y) that you can reach with such a series of steps.

