লাল অংশটা এবং সাথে এর পরে যা যা ধরস (৪টা ৪ ভাবে, ৫টা ৫ ভাবে... ) এইগুলা ভুল হইসে।sm.joty wrote: ....

অর্থাৎ ১ম এ একবারে ১১ টা পার হবে তারপর ১ টা। ১ ভাবে।

২য় ক্ষেত্রে প্রথম ১০ টা একবারে তারপর বাকি ২ টা যাওয়া যায় ২ ভাবে।

৩য় ক্ষেত্রে প্রথম ৯ টা একবারে তারপর বাকি ৩ টা যাওয়া যায় ৩ ভাবে।

....

## Search found 172 matches

- Mon Feb 13, 2012 8:25 am
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Higher Secondary 02
- Replies:
**11** - Views:
**2798**

### Re: BdMO National 2012: Higher Secondary 02

- Sun Feb 12, 2012 1:59 pm
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Primary 10
- Replies:
**1** - Views:
**936**

### BdMO National 2012: Primary 10

**Problem 10:**

Tusher chose some consecutive numbers starting from $1$. He noticed that the least common multiple of those numbers is divisible by $100$. What is the minimum number of numbers he chose?

- Sun Feb 12, 2012 1:56 pm
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Primary 6
- Replies:
**1** - Views:
**926**

### BdMO National 2012: Primary 6

Problem 6: Consider the given diagram. There are three rectangles shown here. Their lengths are $3,\ 4$ and $5$ units respectively, widths respectively $2,\ 3$ and $4$ units. Each small grid represents a square $1$ unit long and $1$ unit wide. Use these diagrams to find out the sum of the consecuti...

- Sun Feb 12, 2012 1:52 pm
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Primary 5
- Replies:
**3** - Views:
**1317**

### BdMO National 2012: Primary 5

Problem 5: If a number is multiplied with itself thrice, the resultant is called its cube. For example: $3 × 3 × 3 = 27$, hence $27$ is the cube of $3$. If $1,\ 170$ and $387$ are added with a positive integer, cubes of three consecutive integers are obtained. What are those three consecutive integ...

- Sun Feb 12, 2012 1:50 pm
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Primary 4
- Replies:
**8** - Views:
**2617**

### BdMO National 2012: Primary 4

**Problem 4:**

Write a number in a paper and hold the paper upside down. If what you get is exactly same as the number before rotation then that number is called

*beautiful*. Example: $986$ is a

*beautiful*number. Find out the largest $5$ digit

*beautiful*number.

- Sun Feb 12, 2012 1:20 pm
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Primary 1
- Replies:
**8** - Views:
**2756**

### BdMO National 2012: Primary 1

**Problem 1:**

Find a three digit number so that when its digits are arranged in reverse order and added with the original number, the result is a three digit number with all of its digits being equal. In case of two digit numbers, here is an example: $23+32=55 $

- Sun Feb 12, 2012 9:32 am
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Junior 10
- Replies:
**3** - Views:
**1407**

### BdMO National 2012: Junior 10

**Problem 10:**

The

*$n$-th*term of a sequence is the least common multiple (l.c.m.) of the integers from $1$ to $n$. Which term of the sequence is the first one that is divisible by $100$?

- Sun Feb 12, 2012 9:29 am
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Junior 9
- Replies:
**2** - Views:
**1340**

### BdMO National 2012: Junior 9

**Problem 9:**

Given triangle $ABC$, the square $PQRS$ is drawn such that $P,\ Q$ are on $BC,\ R$ is on $CA$ and $S$ is on $AB$. Radius of the triangle that passes through $A,\ B,\ C$ is $R$. If $AB = c,\ BC = a,\ CA = b,$ Show that $\frac{AS}{SB}=\frac{bc}{2aR}$

- Sun Feb 12, 2012 9:22 am
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Junior 7, Primary 9
- Replies:
**2** - Views:
**1289**

### BdMO National 2012: Junior 7, Primary 9

Problem: Each room of the Magic Castle has exactly one door. The rooms are designed such that when you can go from one room to the next one through a door, the second room's length is equal to the first room's width, and the second room's width is half of the first room's width (see the figure). Ea...

- Sun Feb 12, 2012 9:12 am
- Forum: National Math Olympiad (BdMO)
- Topic: BdMO National 2012: Junior 6
- Replies:
**4** - Views:
**1536**

### BdMO National 2012: Junior 6

**Problem 6:**

In triangle $ABC$, $AB=7,\ AC=3,\ BC=9$. Draw a circle with radius $AC$ and center $A$. What is the distance from $B$ to the point on the circle that is furthest from $B$?