BdMO National 2013: Secondary 5

Discussion on Bangladesh Mathematical Olympiad (BdMO) National
BdMO
Posts: 134
Joined: Tue Jan 18, 2011 1:31 pm

BdMO National 2013: Secondary 5

Unread post by BdMO » Fri Jan 10, 2014 1:36 am

$ABCD$ is a paddy field of trapezoidal shape. Growth of paddy has been uniform everywhere in the field. Farmers are cutting the paddy and piling it in the nearest edge ($AB$, $BC$, $CD$ or $DA$). What is the portion of the total paddy that is piled up in the side $CD$? It is given that, $\angle DAB=\angle ABC=120^{\circ}$, $\angle BCD=\angle CDA=60^{\circ}$, $AB=BC=50$ units.

User avatar
Fatin Farhan
Posts: 75
Joined: Sun Mar 17, 2013 5:19 pm
Location: Kushtia,Bangladesh.
Contact:

Re: BdMO National 2013: Secondary 5

Unread post by Fatin Farhan » Sun Jan 12, 2014 7:41 pm

Joining $$A,C$$
$$AC^2=AB^2+BC^2-2AB.BCcos120= 50^2+ 50^2+50*50=3*50^2$$
$$AC=50\sqrt{3}$$.
$$\angle BAC= \angle ACB=30^\circ, \angle BAC=90^\circ, \angle ACB=30^\circ$$.
$$CD=AC/sin60 = 100$$, $$AD=CD/sin30 = 50$$.
Let E and F be the midpoint of AD and BC.
$$EF= (AB+CD)/2= 75$$.
Let OA be the perpendicular from A to BC. OA intersects EF at G.
$$OA=AD*sin60=25\sqrt{3}$$
$$OG=1/2 * OA=25\sqrt{3}/2$$.
Let P and Q be two points on EF and M and N be two points on BC such that EP=FQ=DM=CN=OG.
Now $$(PMNQ)= 1/2 * (PQ+MN)*OG=1/2 * (100-25\sqrt{3} +75- 25\sqrt{3})*25\sqrt{3}/2 $$
$$=(175-50\sqrt{3})*25\sqrt{3}/4 $$
$$(ABCD)= 1/2 * (AB+CD)* OA = 1/2 * (100+50)* 25\sqrt{3}$$
$$= 150*25\sqrt{3}/2$$.
$$(PMNQ):(ABCD)= 175-50\sqrt{3}/300$$.
"The box said 'Requires Windows XP or better'. So I installed L$$i$$nux...:p"

sourav das
Posts: 461
Joined: Wed Dec 15, 2010 10:05 am
Location: Dhaka
Contact:

Re: BdMO National 2013: Secondary 5

Unread post by sourav das » Mon Jan 13, 2014 1:48 pm

I got different solution : $\frac{3125 \sqrt{3}}{4}$ square unit... Ratio $\frac{5}{12}$
You spin my head right round right round,
When you go down, when you go down down......
(-$from$ "$THE$ $UGLY$ $TRUTH$" )

Siam
Posts: 13
Joined: Sun Mar 17, 2013 3:36 pm

Re: BdMO National 2013: Secondary 5

Unread post by Siam » Mon Jan 13, 2014 2:26 pm

I also got 5/12

User avatar
Fatin Farhan
Posts: 75
Joined: Sun Mar 17, 2013 5:19 pm
Location: Kushtia,Bangladesh.
Contact:

Re: BdMO National 2013: Secondary 5

Unread post by Fatin Farhan » Mon Jan 13, 2014 5:01 pm

There was a mistake
Fatin Farhan wrote:Let P and Q be two points on EF and M and N be two points on BC such that EP=FQ=DM=CN=OG.
Now $$(PMNQ)= 1/2 * (PQ+MN)*OG=1/2 * (100-25\sqrt{3} +75- 25\sqrt{3})*25\sqrt{3}/2 $$
$$=(175-50\sqrt{3})*25\sqrt{3}/4 $$
$$(ABCD)= 1/2 * (AB+CD)* OA = 1/2 * (100+50)* 25\sqrt{3}$$
$$= 150*25\sqrt{3}/2$$.
$$(PMNQ):(ABCD)= 175-50\sqrt{3}/300$$.
Joining $$A,C$$
$$AC^2=AB^2+BC^2-2AB.BCcos120= 50^2+ 50^2+50*50=3*50^2$$
$$AC=50\sqrt{3}$$.
$$\angle BAC= \angle ACB=30^\circ, \angle BAC=90^\circ, \angle ACB=30^\circ$$.
$$CD=AC/sin60 = 100$$, $$AD=CD/sin30 = 50$$.
Let E and F be the midpoint of AD and BC.
$$EF= (AB+CD)/2= 75$$.
Let OA be the perpendicular from A to BC. OA intersects EF at G.
$$OA=AD*sin60=25\sqrt{3}$$
$$OG=1/2 * OA=25\sqrt{3}/2$$.
Let P and Q be two points on EF such that $$EP=FQ= 25/2$$
So, $$PQ= 75- 25/2 -25/2 = 25$$.
$$(PDCQ) = 1/2 * (PQ+CD)* OG$$
$$= 1/2 * (100+25)* \frac{25 \sqrt{3}}{2} = \frac{3125 \sqrt{3}}{4}$$.
$$(ABCD)= \frac{1}{2} * (AB+CD)* OA = \frac{1}{2} * (100+50)* 25\sqrt{3}$$
$$= 1875\sqrt{3}$$.
$$(PDCQ):(ABCD)=\frac{ \frac{3125 \sqrt{3}}{4}}{1875\sqrt{3}} = \frac{5}{12}$$
"The box said 'Requires Windows XP or better'. So I installed L$$i$$nux...:p"

Post Reply