## Dhaka Regional 2017

Discussion on Bangladesh Mathematical Olympiad (BdMO) National
samiul_samin
Posts: 1004
Joined: Sat Dec 09, 2017 1:32 pm

### Dhaka Regional 2017

Primary No.8
\$ABC\$ is an isosceles triangle where \$AB=AC\$ and \$<A=100 degree\$.\$D\$ is a point on \$AB\$ such that \$CD\$ bicects\$<ACB\$ internally.If \$BC=2018\$ then \$AD+CD=?\$.

samiul_samin
Posts: 1004
Joined: Sat Dec 09, 2017 1:32 pm

### Re: Dhaka Regional 2017

samiul_samin wrote:
Tue Feb 13, 2018 8:48 pm
Primary No.8
\$ABC\$ is an isosceles triangle where \$AB=AC\$ and \$<A=100 degree\$.\$D\$ is a point on \$AB\$ such that \$CD\$ bicects\$<ACB\$ internally.If \$BC=2018\$ then \$AD+CD=?\$.
I am sorry.How can I take this to the Divisional Math Olympiad?   samiul_samin
Posts: 1004
Joined: Sat Dec 09, 2017 1:32 pm

### Re: Dhaka Regional 2017

Primary P\$8\$
\$\triangle ABC\$ is an isosceles triangle where \$AB=AC\$ and \$\angle A=100^{\circ}\$.
\$D\$ is a point on \$AB\$ such that \$CD\$ bicects\$\angle{ACB}\$ internally.
If \$BC=2018\$ then \$AD+CD=?\$.