APMO 2007

Discussion on Asian Pacific Mathematical Olympiad (APMO)
Ashfaq Uday
Posts:21
Joined:Tue Sep 27, 2011 12:18 am
APMO 2007

Unread post by Ashfaq Uday » Thu Dec 15, 2011 9:10 pm

Given \[\sqrt{x}+\sqrt{y}+\sqrt{z}=1\] for all positive real \[x,y,z\]Prove \[\frac{x^2+yz}{\sqrt{2x^2(y+z)}} + \frac{y^2+zx}{\sqrt{2y^2(z+x)}} + \frac{z^2+xy}{\sqrt{2z^2(x+y)}} \geq1\]

User avatar
*Mahi*
Posts:1175
Joined:Wed Dec 29, 2010 12:46 pm
Location:23.786228,90.354974
Contact:

Re: APMO 2007

Unread post by *Mahi* » Fri Dec 16, 2011 9:38 pm

$Q.M. \geq A.M.$ gives us $\sqrt {\frac {y+z} 2} \geq \frac {\sqrt y+\sqrt z} 2$
Or, $\sqrt 2 \sqrt{({y+z})} \geq {\sqrt y+\sqrt z}$
And thus $\frac 1 {\sqrt 2 \sqrt{({y+z})}} \leq \frac 1 {\sqrt y+\sqrt z} $
sourav das wrote:By $Q.M. \geq A.M.$ , \[\sum_{x,y,z} \frac{x^2+yz}{x \sqrt 2 \sqrt {y+z}}\geq\sum_{x,y,z} \frac{x+\frac{yz}{x}}{ \sqrt y +\sqrt {z}}\]
Not so fast!
Please read Forum Guide and Rules before you post.

Use $L^AT_EX$, It makes our work a lot easier!

Nur Muhammad Shafiullah | Mahi

User avatar
*Mahi*
Posts:1175
Joined:Wed Dec 29, 2010 12:46 pm
Location:23.786228,90.354974
Contact:

Re: APMO 2007

Unread post by *Mahi* » Fri Dec 16, 2011 10:18 pm

Great joke... you didn't read the post well did you? If you did then you would have seen that the real inequality and the one you derived has opposite signs, $\leq$ and $\geq$, making your solution incorrect. That's why I added "Not so fast" , because skipping those "innocent" lines can make the proof crumble.
And we all know what the mathlinks people do, they just solves the problem instantly in their head and write it down as fast as their internet works!
Please read Forum Guide and Rules before you post.

Use $L^AT_EX$, It makes our work a lot easier!

Nur Muhammad Shafiullah | Mahi

sourav das
Posts:461
Joined:Wed Dec 15, 2010 10:05 am
Location:Dhaka
Contact:

Re: APMO 2007

Unread post by sourav das » Fri Dec 16, 2011 10:26 pm

Sorry...... I really did a great mistake....
You spin my head right round right round,
When you go down, when you go down down......
(-$from$ "$THE$ $UGLY$ $TRUTH$" )

sourav das
Posts:461
Joined:Wed Dec 15, 2010 10:05 am
Location:Dhaka
Contact:

Re: APMO 2007

Unread post by sourav das » Fri Dec 16, 2011 11:14 pm

\[\sum \frac{x^2+yz}{\sqrt{2x^2(y+z)}}\geq 1\Leftrightarrow 2(\sum \frac{x}{\sqrt{2(y+z)}}) + 2(\sum \frac{yz}{\sqrt{2x^2(y+z)}})\geq 2\].......(*)
W.L.O.G. Let
\[x\geq y\geq z\Rightarrow xy(x-y)+z(x-y)(x+y)\geq 0\Rightarrow x^2(y+z)\geq y^2(z+x)\]
Same way, $y^2(z+x)\geq z^2(x+y)$ And
\[xy\geq zx\geq yz\]
Using re-arrangement inequality and QM$\geq$A.M.
\[2\sum \frac{yz}{\sqrt{2x^2(y+z)}}\geq \sum \frac{y+z}{\sqrt{2(y+z)}}= \sum \sqrt{\frac{y+z}{2}}\geq \sum \frac{\sqrt y + \sqrt z}{2}= 1\].....(i)
\[2\sum \frac{x}{\sqrt{2y+2z}}\geq\sum \frac{y+z}{\sqrt{2y+2z}}= \sqrt{\frac{y+z}{2}}\geq \sum \frac{\sqrt y+\sqrt{z}}{2} = 1\]...........(ii)
Adding (i) and (ii) we'll get (*)
You spin my head right round right round,
When you go down, when you go down down......
(-$from$ "$THE$ $UGLY$ $TRUTH$" )

User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:

Re: APMO 2007

Unread post by Phlembac Adib Hasan » Mon Apr 16, 2012 2:29 pm

My Proof :
\[\sum_{cyc}\frac{x^2+yz}{\sqrt{2x^2(y+z)}}\geq 1\]
\[\Rightarrow \frac{1}{\sqrt{2}}\sum_{cyc}\frac{x^2+yz}{x\sqrt{y+z}}\geq 1\]\[\Rightarrow \left ( \sum_{cyc}\frac{x}{\sqrt{y+z}} \right )+\left ( \sum_{cyc}\frac{yz}{x\sqrt{y+z}} \right )\geq \sqrt{2}....(*)\]
Before going through the proof we'll prove some lemmas.
Lemma 1:
$3(x+y+z)\ge 1$
It is a direct consequence of Cauchy applying to the sequences $1,1,1$ and $\sqrt {x},\sqrt {y},\sqrt {z}$.
Lemma 2 :
$\sum_{cyc}\frac {xy}{z}\ge x+y+z$
Proof:From AM-GM,
\[2\left ( \sum_{cyc}\frac {xy}{z} \right )=\sum_{cyc}\frac {xy}{z}+\frac {yz}{x}\geq 2(x+y+z)\]
And also this is an obvious case of Muirhead:\[[1,1,-1]\ge [1,0,0]\]
Lemma 3 :
$\frac {1}{3(xy+yz+zx)}\ge \frac {1}{(x+y+z)^2}$
It is a direct consequence of AM-GM.So left for you.

Now we'll start the proof:
From Holder's inequality,\[\left ( \sum_{cyc}\frac{x}{\sqrt{y+z}} \right )\left ( \sum_{cyc}\frac{x}{\sqrt{y+z}} \right )\left ( \sum _{cyc} x(y+z)\right )\geq (x+y+z)^3\]
\[\Rightarrow 2\left ( \sum_{cyc}\frac{x}{\sqrt{y+z}} \right )^2\geq \frac{(x+y+z)^3}{xy+yz+zx}\]
\[\Rightarrow 2\left ( \sum_{cyc}\frac{x}{\sqrt{y+z}} \right )^2\geq \frac{3(x+y+z)^3}{3(xy+yz+zx)}\geq \frac{3(x+y+z)^3}{(x+y+z)^2}\]
\[= 3(x+y+z)\geq 1\]\[\Rightarrow 2\left ( \sum_{cyc}\frac{x}{\sqrt{y+z}} \right )^2\geq 1\]\[\Rightarrow \sum_{cyc}\frac{x}{\sqrt{y+z}} \geq \frac{1}{\sqrt{2}}.....(i)\]

Again from Holder,\[\left ( \sum_{cyc}\frac{yz}{x\sqrt{y+z}} \right )\left ( \sum_{cyc}\frac{yz}{x\sqrt{y+z}} \right )\left ( \sum_{cyc}yzx^2(y+z) \right )\geq \left ( xy+yz+zx \right )^3\]\[\Rightarrow 2\left ( \sum_{cyc}\frac{yz}{x\sqrt{y+z}} \right )^2\geq \frac{\left ( xy+yz+zx \right )^3}{xyz(xy+yz+zx)}=\frac{\left ( xy+yz+zx \right )^2}{xyz}\]\[=\frac{x^2y^2+y^2z^2+z^2x ^2}{xyz}+2\frac{xy^2z+yz^2x+zx ^2y}{xyz}\]\[=\sum_{cyc}\frac {xy}{z}+2(x+y+z)\geq 3(x+y+z)\geq 1\]\[\Rightarrow 2\left (\sum_{cyc}\frac{yz}{x\sqrt{y+z}} \right )^2\geq 1\]\[\Rightarrow \sum_{cyc}\frac{yz}{x\sqrt{y+z}}\geq \frac{1}{\sqrt{2}}....(ii)\]
Adding $(i)$ and $(ii)$ we get $(*)$.\[\left ( \sum_{cyc}\frac{x}{\sqrt{y+z}} \right )+\left ( \sum_{cyc}\frac{yz}{x\sqrt{y+z}} \right )\geq \frac {1}{\sqrt{2}}+\frac {1}{\sqrt{2}}=\sqrt {2}\]
At last we are doooonnnne. :D
Welcome to BdMO Online Forum. Check out Forum Guides & Rules

Post Reply