IMO-2010-2

Discussion on International Mathematical Olympiad (IMO)
User avatar
Tahmid Hasan
Posts:665
Joined:Thu Dec 09, 2010 5:34 pm
Location:Khulna,Bangladesh.
IMO-2010-2

Unread post by Tahmid Hasan » Fri Jun 15, 2012 4:53 pm

Given a triangle $ABC$,with $I$ as its incenter and $\Gamma$ as its circumcircle,$AI$ intersects $\Gamma$ again
at $D$.Let $E$ be a point on the arc $BDC$, and $F$ a point on the segment $BC$,such that
$\angle BAE=\angle CAF<\frac {1}{2} \angle BAC$.If $G$ is the midpoint of $IF$,prove that the meeting point of
the lines $EI$ and $DG$ lies on $\Gamma$.
Remarks:
I was in waters to solve this problem,I had no idea what to do with $G$.
Then guess who saved me? Zhao!!(যার কেউ নাই তার ঝাও আছে ;) ).
A nice homothety took $G$ to $F$ and $D$ to the $A$-excenter.Then some angle chasing,similar triangles and working with ratios solved the problem :D
বড় ভালবাসি তোমায়,মা

User avatar
SANZEED
Posts:550
Joined:Wed Dec 28, 2011 6:45 pm
Location:Mymensingh, Bangladesh

Re: IMO-2010-2

Unread post by SANZEED » Fri Jun 15, 2012 11:52 pm

আমি এটার যে Solution জানি সেটার আউটলাইন দিলাম। মুন ভাইয়ার করা।আমি কাছাকাছি গিয়েছিলাম। কিন্তু শেষ কোণটুকু বের করতে পারি নাই।
Let $DG\cap AF=X,DG\cap \tau =I$.
Now using Menelaus and sine rule, we can prove that $IX\parallel BC$. Now use the fact that $ATDC$ is concyclic,we can show that $ATXI$ is concyclic. Then we only need to show that $\angle BAF=\angle CAE'$. This is left for you!
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

Post Reply