New problem

For discussing Olympiad level Geometry Problems
NaziaC
Posts:21
Joined:Tue Dec 07, 2010 5:03 am
Location:Massachusetts, USA
New problem

Unread post by NaziaC » Sat Dec 18, 2010 1:28 am

In triangle $ABC$, $G$ is the centroid and $D$ is the midpoint of $CA$. The line through $G$ parallel to $BC$ meets $AB$ at $E$. Prove that \[\angle AEC= \angle DGC\] if and only if \[\angle ACB= 90^{\circ}\].
"Be less curious about people and more curious about ideas."

Corei13
Posts:153
Joined:Tue Dec 07, 2010 9:10 pm
Location:Chittagong

Re: New problem

Unread post by Corei13 » Sat Dec 18, 2010 3:15 am

HINT:
$\angle AEC = \angle AEG + \angle GEC$
$= \angle EBG + \angle GBC + \angle ECB$
and, $\angle DGC = \angle GCB + \angle GBC$
$= \angle GCE + \angle ECB + \angle GBC$

$ \Longrightarrow \angle EBC = \angle GCE $
$ \Longrightarrow \angle GCB = \angle B$
ধনঞ্জয় বিশ্বাস

User avatar
Masum
Posts:592
Joined:Tue Dec 07, 2010 1:12 pm
Location:Dhaka,Bangladesh

Re: New problem

Unread post by Masum » Tue Dec 21, 2010 2:55 pm

Only if part:
Let $AH,BD,CF$ be medians,$C=90,GE $ intersect $AB$ at $L,BG$ intersect $CE$ at $K$.
$F$ is the circumcentre of $ABC$,so $FB=FC,FG=FE$.Because $FH$ is the perpendicular bisector of $GE,\Delta GKE$ is isosceles.
So $\angle AEC=\angle AEG+\angle KEG=\angle KGE+\angle FGE=\angle DGL+\angle CGL=\angle DGC$
One one thing is neutral in the universe, that is $0$.

Post Reply