Problem! Problem!

For discussing Olympiad level Geometry Problems
User avatar
TIUrmi
Posts:61
Joined:Tue Dec 07, 2010 12:13 am
Location:Dinajpur, Bangladesh
Contact:
Problem! Problem!

Unread post by TIUrmi » Tue Mar 22, 2011 12:40 pm

Let $\triangle ABC$ be an acute, scalene triangle, and let $M$, $N$, and $P$ be the midpoints of $BC$, $CA$, and $AB$, respectively. Let the perpendicular bisectors of $AB$ and $AC$ intersect ray $AM$ in points $D$ and $E$ respectively, and let lines $BD$ and $CE$ intersect in point $F$, inside of triangle $\triangle ABC$. Prove that points $A$, $N$, $F$, and $P$ all lie on one circle.
"Go down deep enough into anything and you will find mathematics." ~Dean Schlicter

User avatar
Zzzz
Posts:172
Joined:Tue Dec 07, 2010 6:28 am
Location:22° 48' 0" N / 89° 33' 0" E

Re: Problem! Problem!

Unread post by Zzzz » Wed Mar 30, 2011 11:01 am

Let $\beta=\angle BAD\ (=\angle ABD)$ and $\gamma=\angle CAE\ (=\angle AEC)$
$A=\beta + \gamma$
$\angle DEF=\angle CAE + \angle AEC = 2 \gamma$
$\angle FDE=\angle BAD + \angle ABD = 2 \beta$
$\therefore \angle BFC = \angle DEF + \angle FDE = 2\gamma + 2 \beta = 2(\beta+\gamma) = 2A$
$\therefore$ reflex angle $BFC=360\circ-2A$
From $\Delta ABM \to ABsin\ \beta=BMsin\ \angle AMB$
From $\Delta ACM \to ACsin\ \gamma=CMsin\ \angle AMC$
As, $BMsin\ \angle AMB=CMsin\ \angle AMC \Rightarrow ABsin\ \beta=ACsin\ \gamma...\ (1)$
From $\Delta ABF \to AFsin\ \angle AFB=ABsin\ \beta$, From $\Delta ACF \to AFsin\ \angle AFC=ACsin\ \gamma$.
Using (1), $AFsin\ \angle AFB=AFsin\ \angle AFC$
$\therefore \angle AFB= \angle AFC\ [\angle AFB \neq 180\circ - \angle AFC$ as $B,F,C$ aren't collinear$]$
So, $AF$ bisects reflex angle $BFC$
$\angle AFC=\frac {\text{reflex angle}BFC}{2}=180\circ-A$
$\angle AFD=\angle AFC-\angle DFE=A$ [$\angle DFE=180\circ - \angle BFC = 180\circ-2A$]
Now, $\angle AFD=\angle ABF+\ \angle BAF\Rightarrow \angle BAF=A-\beta=\gamma$
In $\Delta AFB$ and $\Delta AFC,\ \angle BAF=\angle ACF(=\gamma),\ \angle AFB=\angle AFC$.
So, they are similar. Now, $\frac {AF}{CF}= \frac {AB}{AC}\Rightarrow \frac {AF}{CF}=\frac{\frac{AB}{2}}{\frac{AC}{2}}=\frac{AP}{CN}$.
$\angle PAF=\angle NCF$
$\therefore \Delta APF \approx \Delta CNF$.
$\angle PFA=\angle NFC$
Now, $\angle PFN=\angle PFA+\angle AFN=\angle NFC + \angle AFN= \angle AFC = 180\circ -A$
$\therefore \angle PFN + A=180\circ$
So, $A,P,F,N$ cyclic.
Attachments
problem.JPG
problem.JPG (12.25KiB)Viewed 5117 times
Every logical solution to a problem has its own beauty.
(Important: Please make sure that you have read about the Rules, Posting Permissions and Forum Language)

User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:

Re: Problem! Problem!

Unread post by Phlembac Adib Hasan » Tue Feb 21, 2012 12:09 pm

Euclidean proofs are the most beautiful ones.But in problems like this one, Euclidean fails to give a nice proof.(Like Zubayer vaia's proof.)Seeing this problem I realized that complex or co-ordinate can give the shortest proof.Though I tried about $45$ minutes to find a Euclidean proof as others advise so.But I was not successful and did almost half of the problem.So I came back to algebraic methods and after twenty minutes I was done. :)
My Proof :
It's easier to work with complex numbers but I chose co-ordinate to test my calculation power. ;)
Set $B =(-1,0),C=(1,0)$ and $A=(a,b)$.So $M$ is the origin.$AM$'s equation is $y=\dfrac {b}{a}x$.Similarly $PD$'s equation is $y=-\dfrac{a+1}{b}x+\dfrac{a^2+b^2-1}{2b}$ and $NE$'s equation is $y=-\dfrac{a-1}{b}x+\dfrac{a^2+b^2-1}{2b}$.Let $a^2+b^2-1=m$.So the equations become $y=-\dfrac{a+1}{b}x+\dfrac{m}{2b}$ and $y=-\dfrac{a-1}{b}x+\dfrac{m}{2b}$.After some calculation we find $D=\left (\dfrac{ma}{2(a^2+a+b^2)},\dfrac{mb}{2(a^2+a+b^2)}\right ),E=\left (\dfrac{ma}{2(a^2-a+b^2)},\dfrac{mb}{2(a^2-a+b^2)}\right )$.Let $a^2+a+b^2=n$ and $a^2-a+b^2=p$.Therefore, $D=\left (\dfrac{ma}{2n},\dfrac{mb}{2n}\right ),E=\left (\dfrac{ma}{2p},\dfrac{mb}{2p}\right )$.So $BD$'s equation is $y=\dfrac {mb}{2n+ma}(x+1)$and $CE$'s $y=\dfrac {mb}{ma-2p}(x-1)$
After one page calculation we find co-ordinate of $F$ from here:\[F=\left (\frac{a(m+2)}{2(m+1)},\frac {mb}{2(m+1)}\right )\]Let $O$ be the circumcenter of $\triangle ABC$ and $O'$ be that of $\triangle APN$.It follows that $O'$ is the mid point of $OA$.So I only need to prove $O'F=O'A$.After some calculation we find that $O=(0,\dfrac{m}{2b})$ and $O'=\left (\dfrac {a}{2},\dfrac {2b^2+m}{4b}\right )$.So \[O'A^2=\frac {1}{4}OA^2=\dfrac {(a-0)^2+\left ( b-\dfrac{m}{2b}\right )^2}{4}=\dfrac{1+\dfrac{m^2}{4b^2} }{4}\]
And\[O'F^2=\left ( \frac{a}{2} -\frac{a(m+2)}{2(m+1)}\right )^2+\left ( \frac{mb}{2(m+1)}-\frac{2b^2+m}{4b} \right )^2\]\[=\frac{1}{4}\left [\frac{a^2}{(m+1)^2}+\left ( \frac{mb}{(m+1)}-\frac{2b^2+m}{2b} \right )^2\right ]\]Thus we need to show
\[\frac{a^2}{(m+1)^2}+\left ( \frac{mb}{(m+1)}-\frac{2b^2+m}{2b} \right )^2=1+\frac{m^2}{4b^2}\]I'll compare these two :\[\frac{a^2}{(m+1)^2}+\left ( \frac{mb}{(m+1)}-\frac{2b^2+m}{2b} \right )^2\; \; ?\; \; 1+\frac{m^2}{4b^2}\]After a few lines we find \[\frac{a^2}{(m+1)^2}+\frac {b^2m^2}{(m+1)^2}-b^2+\frac {2b^2}{m+1}-\frac {1}{m+1}\; \; ?\; \; 0\]\[\Rightarrow \frac{a^2}{(m+1)^2}+\frac {b^2((m+1)^2-2(m+1)+1)}{(m+1)^2}-b^2+\frac {2b^2}{m+1}-\frac {1}{m+1}\; \; ?\; \; 0\]\[\Rightarrow \frac {a^2}{(m+1)^2}+\frac {b^2}{(m+1)^2}-\frac {1}{m+1}\; \; ?\; \; 0\]\[\Rightarrow \frac {a^2+b^2}{(m+1)^2}-\frac {1}{m+1}\; \; ?\; \; 0\]\[\Rightarrow \frac {1}{m+1}-\frac {1}{m+1}\; \; ?\; \; 0\] Which implies $"?"$ is $"="$.So the result follows.
Generalization :Let $BD$ and $CE$ meets $MN$ and $PM$ at $T$ and $S$ ,respectively.Then $A,P,S,F,O,N,T$ are con-cyclic.It's proof is similar to my given proof.
Figure :
problem! problem!.jpg
problem! problem!.jpg (335.93KiB)Viewed 4838 times
Last edited by Phlembac Adib Hasan on Tue Feb 21, 2012 6:13 pm, edited 1 time in total.
Welcome to BdMO Online Forum. Check out Forum Guides & Rules

sourav das
Posts:461
Joined:Wed Dec 15, 2010 10:05 am
Location:Dhaka
Contact:

Re: Problem! Problem!

Unread post by sourav das » Tue Feb 21, 2012 1:09 pm

Most of the time Euclidean way has solution.
Let the symmetric median $AF'$. Now, let $AF'\cap CE=F'$ and $AF'\cap BD=F''$. Angle chase to show, a spiral similarity takes $\triangle F'CA$ to $\triangle F''AB$ . Note that using sine law it's easy to prove, $\frac {sin\angle BAM}{sin \angle MAC}=\frac{AC}{AB} $. Now use sine law to $\triangle F'CA$ and $\triangle F''AB$ to show $AF'=\frac{ABsin \angle MAC }{sin \angle A}$=$\frac{AC\sin \angle BAM}{sin\angle A}$=AF''. So $F'=F''=F$.. So the spiral similarity center is $F$. As $N,P$ are midpoints, so, $\angle FNA=\angle FPB$. So, $A, N,F,P$ are cyclic.

And Adib's generalization directly comes from angle chasing.(And using $PM||AC$....)
You spin my head right round right round,
When you go down, when you go down down......
(-$from$ "$THE$ $UGLY$ $TRUTH$" )

User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:

Re: Problem! Problem!

Unread post by Phlembac Adib Hasan » Tue Feb 21, 2012 6:20 pm

sourav das vaia wrote: And Abid's generalization directly comes from angle chasing.(And using $PM||AC$....)
That's Adib. so far many persons have made this mistake.
Welcome to BdMO Online Forum. Check out Forum Guides & Rules

sourav das
Posts:461
Joined:Wed Dec 15, 2010 10:05 am
Location:Dhaka
Contact:

Re: Problem! Problem!

Unread post by sourav das » Wed Feb 22, 2012 5:51 am

Phlembac Adib Hasan wrote:
sourav das vaia wrote: And Abid's generalization directly comes from angle chasing.(And using $PM||AC$....)
That's Adib. so far many persons have made this mistake.
Really really sorry , it's because I'm a novice in typing... :oops:
You spin my head right round right round,
When you go down, when you go down down......
(-$from$ "$THE$ $UGLY$ $TRUTH$" )

User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:

Re: Problem! Problem!

Unread post by Phlembac Adib Hasan » Wed Feb 22, 2012 10:51 pm

It's alright. 8-) আমার জীবনের সবচেয়ে বড় ট্র্যাজেডিটা হচ্ছে আমার নামটা কেউ কোনদিন ঠিক করে লিখতে পারল না । সবাই লেখে আবিদ , আবীর ... একজন আবার লিখেছিল আবীব !genius !! আর যদিও বা কেউ ঠিক করে ধরতে পারে , তবে লেখে 'আদিব' । এই জীবনে কাউকে আদীব লিখতে দেখলাম না :cry: :cry: :cry:
Welcome to BdMO Online Forum. Check out Forum Guides & Rules

User avatar
Tahmid Hasan
Posts:665
Joined:Thu Dec 09, 2010 5:34 pm
Location:Khulna,Bangladesh.

Re: Problem! Problem!

Unread post by Tahmid Hasan » Thu Feb 23, 2012 10:32 am

Phlembac Adib Hasan wrote:It's alright. 8-) আমার জীবনের সবচেয়ে বড় ট্র্যাজেডিটা হচ্ছে আমার নামটা কেউ কোনদিন ঠিক করে লিখতে পারল না । সবাই লেখে আবিদ , আবীর ... একজন আবার লিখেছিল আবীব !genius !! আর যদিও বা কেউ ঠিক করে ধরতে পারে , তবে লেখে 'আদিব' । এই জীবনে কাউকে আদীব লিখতে দেখলাম না :cry: :cry: :cry:
ভাইয়া তোমার কষ্ট আমি সামান্য হলেও বুঝি।আমাকে বহুবার অনেকেই 'তামজীদ' অথবা 'তানভীর' বলে সম্বোধন করেছে। :(
তা ভাইয়া তুমি এককাজ করতে পার।'User Control Panel>Profile>signature' এ গিয়ে নিজের নাম সুন্দর করে বাংলায় লিখে রাখ,তাহলে অন্তত ফোরামে এমন বিব্রতকর অবস্থায় পড়তে হবে না। :)
বড় ভালবাসি তোমায়,মা

User avatar
Phlembac Adib Hasan
Posts:1016
Joined:Tue Nov 22, 2011 7:49 pm
Location:127.0.0.1
Contact:

Re: Problem! Problem!

Unread post by Phlembac Adib Hasan » Sat Feb 25, 2012 3:16 pm

Tahmid Vaia wrote:
Phlembac Adib Hasan wrote:It's alright. 8-) আমার জীবনের সবচেয়ে বড় ট্র্যাজেডিটা হচ্ছে আমার নামটা কেউ কোনদিন ঠিক করে লিখতে পারল না । সবাই লেখে আবিদ , আবীর ... একজন আবার লিখেছিল আবীব !genius !! আর যদিও বা কেউ ঠিক করে ধরতে পারে , তবে লেখে 'আদিব' । এই জীবনে কাউকে আদীব লিখতে দেখলাম না :cry: :cry: :cry:
ভাইয়া তোমার কষ্ট আমি সামান্য হলেও বুঝি।আমাকে বহুবার অনেকেই 'তামজীদ' অথবা 'তানভীর' বলে সম্বোধন করেছে। :(
তা ভাইয়া তুমি এককাজ করতে পার।'User Control Panel>Profile>signature' এ গিয়ে নিজের নাম সুন্দর করে বাংলায় লিখে রাখ,তাহলে অন্তত ফোরামে এমন বিব্রতকর অবস্থায় পড়তে হবে না। :)
তাই করলাম :)
Welcome to BdMO Online Forum. Check out Forum Guides & Rules

Post Reply