Divisors...

For discussing Olympiad Level Number Theory problems
User avatar
SANZEED
Posts:550
Joined:Wed Dec 28, 2011 6:45 pm
Location:Mymensingh, Bangladesh
Divisors...

Unread post by SANZEED » Tue Feb 26, 2013 11:35 pm

Find all positive integer $m$ such that $d(2m^{3})=2m$ where $d(x)$ means the number of divisors of $x$.
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

User avatar
Fm Jakaria
Posts:79
Joined:Thu Feb 28, 2013 11:49 pm

Re: Divisors...

Unread post by Fm Jakaria » Sun Nov 02, 2014 5:20 pm

Write
$m = 2^{s} \prod^{i = k}_{i=1} {p_{i}}^{e_{i}}$ be the prime factorization of $m; s, k$ are nonnegative; all $p_i$’s divide m.
From the given relation:
$(3s + 2) \prod (3e_i+1) = 2^{s+1} \prod {p_i}^{e_i} = 2m….(1)$
It tells that $3$ does not divide $m$.

Now simply note that
1. $2^x \geqslant 3x – 1; \forall x \in \mathbb{N}, x \neq 2$; equality iff $x = 1 or 3$.
2. $p^j > 3j + 1; \forall$ prime $p > 3$ and $\forall j \in \mathbb{N}$.

Note we can apply $1$ with $x = s + 1$; remembering $2$. Now two cases:
1. $s = 0$ or $2$; and $k = 0 \rightarrow m = 1$ or $4$.
2. $s = 1$ and $k > 0$. Then $p_1 = 5$ and
$\prod (3{e_i}+1) = 4* 5^{{p_1} – 1} \prod_{i = 2}^{i = k} {p_i}^{e_i}.$
Use $4. 5^{t-1} \geqslant 3t + 1; \forall t \in \mathbb{N}$ equality iff $t = 1$. Combine with $2$. We get
$i = 1$ and $e_1 = 1 \rightarrow m = 10$.

So $m = 1, 4, 10$ are the solutions.
You cannot say if I fail to recite-
the umpteenth digit of PI,
Whether I'll live - or
whether I may, drown in tub and die.

Post Reply