USA tst 2010 day 1 problem 2

For discussing Olympiad Level Algebra (and Inequality) problems
User avatar
SANZEED
Posts:550
Joined:Wed Dec 28, 2011 6:45 pm
Location:Mymensingh, Bangladesh
USA tst 2010 day 1 problem 2

Unread post by SANZEED » Mon Aug 13, 2012 11:26 pm

Let $a,b,c$ be positive real numbers such that $abc=1$. Show that
$\frac{1}{a^{5}(b+2c)^{2}}+\frac{1}{b^{5}(c+2a)^{2}}+\frac{1}{c^{5}(a+2b)^{2}}\geq \frac{1}{3}$.
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

User avatar
SANZEED
Posts:550
Joined:Wed Dec 28, 2011 6:45 pm
Location:Mymensingh, Bangladesh

Re: USA tst 2010 day 1 problem 2

Unread post by SANZEED » Mon Aug 13, 2012 11:38 pm

Let $x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}$ then by calculation,
$\sum_{cyclic}\frac{1}{a^{5}(b+2c)^{2}}=\sum_{cyclic}\frac{x^{3}}{(2y+z)^{2}}$.
But by Holder, $(\sum_{cyclic}\frac{x^{3}}{(2y+z)^{2}})(\sum_{cyclic}2y+z)(\sum_{cyclic}2y+z)\geq (x+y+z)^{3}$.
Now notice that $(\sum_{cyclic}2y+z)^{2}=9(x+y+z)^{2}$ and $x+y+z\geq 3$ (by AM-GM). The result follows from these. :D
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

Post Reply