Ineq

For discussing Olympiad Level Algebra (and Inequality) problems
yo79
Posts:53
Joined:Mon Feb 04, 2013 1:01 am
Ineq

Unread post by yo79 » Mon Apr 08, 2013 11:03 pm

Let a,b,c>0 be three real numbers. Prove that:
$\sum\limits_{cyc} \frac{a(b+c)}{\sqrt{(a^2+b^2)(a^2+c^2)}} \le 3$

User avatar
*Mahi*
Posts:1175
Joined:Wed Dec 29, 2010 12:46 pm
Location:23.786228,90.354974
Contact:

Re: Ineq

Unread post by *Mahi* » Tue Apr 09, 2013 12:06 am

QM-AM inequality implies
\[\sum\limits_{cyc} \frac{a(b+c)}{\sqrt{(a^2+b^2)(a^2+c^2)}} \le \sum\limits_{cyc} \frac{2a(b+c)}{{(a+b)(a+c)}} \]
So we have to prove \[\sum\limits_{cyc} \frac{2a(b+c)}{{(a+b)(a+c)}} \le 3\]
Or \[\sum\limits_{cyc} \frac{2a(b+c)}{{(a+b)(a+c)}} = \frac{\sum\limits_{cyc} 2a(b+c)^2}{(a+b)(b+c)(c+a)} \le 3\]
\[\Leftrightarrow \sum\limits_{cyc} 2a(b+c)^2 \le 3(a+b)(b+c)(c+a) \]
Expanding, we get this is the same as proving $8abc \le (a+b)(b+c)(c+a)$, which can be proved using AM-GM on $(a+b),(b+c),(c+a)$.
Please read Forum Guide and Rules before you post.

Use $L^AT_EX$, It makes our work a lot easier!

Nur Muhammad Shafiullah | Mahi

yo79
Posts:53
Joined:Mon Feb 04, 2013 1:01 am

Re: Ineq

Unread post by yo79 » Tue Apr 09, 2013 2:17 am

Thank you!

Post Reply