USA(J)MO 2017 #2

For discussing Olympiad Level Algebra (and Inequality) problems
dshasan
Posts: 66
Joined: Fri Aug 14, 2015 6:32 pm
Location: Dhaka,Bangladesh

USA(J)MO 2017 #2

Unread post by dshasan » Sat Apr 22, 2017 6:23 pm

Consider the equation $(3x^3 + xy^2)(x^2y + 3y^3) = (x - y)^7$

a. Prove that there are infinitely many pairs$(x,y)$ of positive integers satisfying the equation.
b. Describe all pairs $(x,y)$ of positive integers satisfying the equation.
The study of mathematics, like the Nile, begins in minuteness but ends in magnificence.

- Charles Caleb Colton

User avatar
Atonu Roy Chowdhury
Posts: 63
Joined: Fri Aug 05, 2016 7:57 pm
Location: Chittagong, Bangladesh

Re: USA(J)MO 2017 #2

Unread post by Atonu Roy Chowdhury » Sun Apr 23, 2017 8:44 am

Substitute $a=x+y$ and $b=x-y$ and after some simplification, we get
$a^6 = b^6(4b+1)$
So, $4b+1=(2n+1)^6$
Here we'll find a value of $b$ in terms of $n$. Then $a=(2n+1)b$, here we'll input the value of $b$ and get a value of $a$ in terms of $n$. $x=\frac{a+b}{2}$ and $y=\frac{a-b}{2}$ .
This was freedom. Losing all hope was freedom.

Post Reply