Page 1 of 1

Inequality with abc = 1

Posted: Mon May 15, 2017 2:03 am
by Katy729
Let $ x, y, z$ be positive real numbers so that $ xyz = 1$. Prove that

\[ \left( x - 1 + \frac 1y \right) \left( y - 1 + \frac 1z \right) \left( z - 1 + \frac 1x \right) \leq 1.
\]

Re: Inequality with abc = 1

Posted: Mon May 15, 2017 11:06 am
by asif e elahi
Hint:
Prove that
\begin{eqnarray}
\left( x - 1 + \dfrac 1y \right) \left( y - 1 + \dfrac 1z \right)\leq \dfrac{x}{z}
\end{eqnarray}

Re: Inequality with abc = 1

Posted: Sat May 20, 2017 12:07 am
by Atonu Roy Chowdhury
My solution. Same as Asif Bhai's.
$(x-1+\frac{1}{y})(y-1+\frac{1}{z})=xy-x+\frac{x}{z}-y+1-\frac{1}{z}+1-\frac{1}{y}+\frac{1}{yz}=\frac{x}{z}+2-(y+\frac{1}{y})\le \frac{x}{z}$ because $y+\frac{1}{y} \ge 2$
Similarly we get, $(y-1+\frac{1}{z})(z-1+\frac{1}{x}) \le \frac{y}{x}$ and $(z-1+\frac{1}{x})(x-1+\frac{1}{y}) \le \frac{z}{y}$ . Multiplying these three, we get the result.

Re: Inequality with abc = 1

Posted: Sun May 21, 2017 2:42 am
by Katy729
Good solution Atonu! :)