Binomial Iteration

For discussing Olympiad Level Combinatorics problems
User avatar
sowmitra
Posts:155
Joined:Tue Mar 20, 2012 12:55 am
Location:Mirpur, Dhaka, Bangladesh
Binomial Iteration

Unread post by sowmitra » Sun Sep 09, 2012 7:58 pm

Prove that,
\[\displaystyle\binom{\binom{n}{2}}{2}=3\binom{n+1}{4}\forall n\in\mathbb{N}\]
"Rhythm is mathematics of the sub-conscious."
Some-Angle Related Problems;

User avatar
SANZEED
Posts:550
Joined:Wed Dec 28, 2011 6:45 pm
Location:Mymensingh, Bangladesh

Re: Binomial Iteration

Unread post by SANZEED » Mon Sep 10, 2012 6:27 am

$\binom{\binom{n}{2}}{2}=\frac{\frac{n(n-1)}{2}\times (\frac{n(n-1)}{2}-1)}{2}=\frac{n(n-1)(n^{2}-n-2)}{2\times 4}=\frac{n(n-1)(n-2)(n+1)}{8}$.
On the other hand,$3\binom{n+1}{4}=3\times \frac{(n+1)n(n-1)(n-2)}{4!}=\frac{n(n-1)(n-2)(n+1)}{8}$.
The result follows. :mrgreen:
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

User avatar
sowmitra
Posts:155
Joined:Tue Mar 20, 2012 12:55 am
Location:Mirpur, Dhaka, Bangladesh

Re: Binomial Iteration

Unread post by sowmitra » Mon Sep 10, 2012 7:29 pm

@ Sanzeed: Wow, man, you are getting really good at providing hard-core analytic solutions. ;) My solution was a Combinatorial one, But, your one works just as well. :)
"Rhythm is mathematics of the sub-conscious."
Some-Angle Related Problems;

User avatar
SANZEED
Posts:550
Joined:Wed Dec 28, 2011 6:45 pm
Location:Mymensingh, Bangladesh

Re: Binomial Iteration

Unread post by SANZEED » Tue Sep 11, 2012 6:04 am

Thanks @Sowmitra vai. Actually I didn't thought of a combinatorial solution because I find it a lot easier for me to use analytic solution than a combinatorial one. :cry: And here is another one I found out from the Principles and Techniques in Combinatorics .
We know that $(x+y)^{n}=\displaystyle\sum_{r=0}^{n}\binom{n}{r}x^{n-r}y^{r}$. Now let $x=1$ then,
$(1+y)^{n}=\displaystyle\sum_{r=0}^{n}\binom{n}{r}y^{r}$. Taking the second derivative,
$n(n-1)(1+y)^{n-2}=\displaystyle\sum_{r=0}^{n}r(r-1)\binom{n}{r}y^{r-2}$. Now letting $y=1$ we have,
$n(n-1)2^{n-2}=\displaystyle\sum_{r=0}^{n}(r^{2}-r)\binom{n}{r}=\displaystyle\sum_{r=0}^{n}r^{2}\binom{n}{r}-\displaystyle\sum_{r=0}^{n}r\binom{n}{r}=\displaystyle\sum_{r=0}^{n}r^{2}\binom{n}{r}-n2^{n-1}$.
That is, $\displaystyle\sum_{r=0}^{n}r^{2}\binom{n}{r}=n(n-1)2^{n-2}+n2^{n-1}=n2^{n-2}(n-1+2)=n(n+1)2^{n-2}$.
:mrgreen:
$\color{blue}{\textit{To}} \color{red}{\textit{ problems }} \color{blue}{\textit{I am encountering with-}} \color{green}{\textit{AVADA KEDAVRA!}}$

User avatar
sowmitra
Posts:155
Joined:Tue Mar 20, 2012 12:55 am
Location:Mirpur, Dhaka, Bangladesh

Re: Binomial Iteration

Unread post by sowmitra » Tue Sep 11, 2012 7:49 pm

@Sanzeed: তুমিও 'Principles and Techniques in Combinatorics' থেকে পড়। Awesome book.......!!! 8-) সিঙ্গাপুরিয়ানরা আসলেই কম্বিতে খুব ভাল। :geek:
"Rhythm is mathematics of the sub-conscious."
Some-Angle Related Problems;

Post Reply