USAMO 2017/4, USA(J)MO 2017/6

For discussing Olympiad Level Combinatorics problems
User avatar
Thamim Zahin
Posts: 98
Joined: Wed Aug 03, 2016 5:42 pm

USAMO 2017/4, USA(J)MO 2017/6

Unread post by Thamim Zahin » Sat Apr 22, 2017 6:17 pm

Let $P_1$, $P_2$, $\dots$, $P_{2n}$ be $2n$ distinct points on the unit circle $x^2+y^2=1$, other than $(1,0)$. Each point is colored either red or blue, with exactly $n$ red points and $n$ blue points. Let $R_1$, $R_2$, $\dots$, $R_n$ be any ordering of the red points. Let $B_1$ be the nearest blue point to $R_1$ traveling counterclockwise around the circle starting from $R_1$. Then let $B_2$ be the nearest of the remaining blue points to $R_2$ travelling counterclockwise around the circle from $R_2$, and so on, until we have labeled all of the blue points $B_1, \dots, B_n$. Show that the number of counterclockwise arcs of the form $R_i \to B_i$ that contain the point $(1,0)$ is independent of the way we chose the ordering $R_1, \dots, R_n$ of the red points.
I think we judge talent wrong. What do we see as talent? I think I have made the same mistake myself. We judge talent by the trophies on their showcases, the flamboyance the supremacy. We don't see things like determination, courage, discipline, temperament.

Post Reply